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1. Introduction

Literature:

J.M. Yeomans: Statistical mechanics of phase transitions
Oxford 1992, 144 S, ca. 60 €
readable and compact

P.M. Chaikin, T.C. Lubensky: Principles of condensed matter physics
Cambridge 1995, 684 S, ca. 50 €
concise, almost exclusively on phase transitions

I.D. Lawrie: A unified grand tour of theoretical physics
Bristol 1990, 371 S, ca. 50 €
really grand tour with many analogies

P. Davies: The New Physics
Cambridge 1989, 500 S, ca. 50 €
in-bed reading 

other sources will be given 'on the ride'
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• Particle physics Standard model …
• Nuclear physics Quark-gluon transition

Liquid-gas transition …
• Atomic physics Bose-Einstein

Laser
• Condensed matter Glass transition

Surfaces
Biophysics …

• Environmental physics Condensation
Aggregation
Percolation …

• Astrophysics, Cosmology→ next page
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Phase transitions of the vacuum:
Transition Temperature Time
Planck 1019 eV ~0 s
GUT’s ? ?
Inflation ? ?
Electro-weak 100 GeV 10-12 s

Phase transitions of matter, i.e. freeze out of:
Quark-gluon plasma to nucleons 100 GeV? 10-12 s ? 
Nucleons to nuclei 1 MeV 1 s
Atoms 10 eV

105 a
Galaxies 3 K today
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Topics not treated
Phase transitions are a subfield of non-linear physics

Not treated are these 'critical phenomena':

Route to chaos
Turbulence
Self organized criticality (forest fires, avalanches, …)
…

Also not treated are these topics on phase transitions:

Bose-Einstein condensates
Superfluidity
Quark-Gluon Plasma
Quantum phase transitions
Aggregates
Fragmentation
Percolation
Liquid crystals
Isolator-metal transitions
Topological defects
Traffic jams
…
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2. Phenomenology

"Phenomenology of phase transitions" 

derived from φαίνω = I appear, shine:
'phase' of moon as a periodic 'phenomenon',
'phase' = aggregate state as 'phenomenon',
'phantasy', 'fancy', …

Four 'elements':
• earth = solid
• water = liquid
• air = gas
• fire = plasma
are the four aggregate states.
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Control parameter
Phase transition = sudden change of the state of a system (probe)

upon a small change of an external parameter:
parameter reaches 'critical value'.

more general: sudden shifts in behavior
arising from small changes in circumstances

In most of the cases treated in this lecture this control-parameter is temperature
(it can also be pressure, atomic composition, 
connectivity, traffic density, public mood, taxation rate, …):

1st example: magnet
TC = critical temperature:

below TC: ferromagnet FM
above TC: paramagnet PM

here: TC = Curie temperature

The transition is an order-disorder transition: PM: disorder FM: order

Iron (Fe): TC(Fe)=7440 C (dark red glow)

http://www.physics.carleton.ca/~watson/LinR_course/cosmology/gifs/High_temp_Ferromagnet.gif
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Below the critical temperature the probe suddenly
acquires a property, described by a parameter M:

below TC: M ≠ 0,
which it did not have above the critical temperature:

above TC: M = 0.
This parameter M is called the order-parameter:

Our example:
Order parameter = magnetisation M

(natura facit saltus)

N.B.: Disorder: high symmetry:
↓

Order: low symmetry:

↑TC

FM PM

PM: rotational
symmetry

↓

FM: cylindrical
symmetry



Phase Transitions Graduate Days 
Oct. 2006

10

Critical exponent

Observation:
Near TC the order M parameter depends on 
temperature T like:

above TC:  M(T ) = 0 PM
below TC:  M(T ) = M0 (1−T/TC)β FM

with critical exponent β.

Examples: M(T ) ~√ (TC−T ) : 

critical exponent β = ½

M(T ) ~3rd√ (TC − T ) : 

critical exponent β = ⅓

1-dimensional magnet:
"bifurcation"

Mz

FM PM
T

TC
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Comparison with experiment

log-log linear-
linear

M(T)

T

With reduced temperature

t = (TC − T)/TC

and m = M/M0:

the order parameter scales with temperature 
as m = tβ,

or ln m = β ln t

Temperature dependence of magnetisation
measured by magnetic scattering of x-rays
(European Synchrotron Radiation Facility) 
or of neutrons (Institut Laue Langevin)
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Grenoble

←Belle
donne

←Bastille

ILL→

ESRF→
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A 'run-away' phenomenon

Why are phase transistions so sudden?

2nd example: liquid

below TC: liquid   L
above TC: gas       G

Example of boiling water:
when a bond between 2 molecules breaks due to a thermal fluctuation,
then there is an increased probability that a 2nd bond of the molecule
with another neighbour breaks, too.

below TC: broken bond heals, before 2nd bond breaks – water in boiler is noisy
above TC: broken bond does not heal, before 2nd bond breaks – water boils:

A 'run-away' or 'critical' phenomenon: L → G

http://www.nyu.edu/pages/mathmol/modules/water/dimer.mpg
http://www.nyu.edu/pages/mathmol/modules/water/water_hbond.gif


Phase Transitions Graduate Days 
Oct. 2006

14

Latent heat

Heat a block of ice:

Melting S → L
Transition: order → short range order

Boiling L → G
Transition: short range order → disorder

Breaking of bonds requires energy = latent heat
= difference in electrostatic molecular potential,

without change in temperature, 
i.e. same kinetic energy of molecules.

At critical temperature TC:
Addition of heat only changes mass ratios
ice/water or water/vapor, but not the temperature

--S-|     |---L---|       |-G--

boiling: Tb=1000→

melting Tm= 00→

T

Q ~ t

| Qm|

|  Qb |

heat of melting Qm ↑
heat of evaporation Qb ↑

Water (H2O): 
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When there is latent heat, the heat capacity dQ/dT diverges.

S L G

T / 0C

T / 0C

C=dQ/dT

Q
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1st order vs. continuous phase transitions
p-V phase diagram
for water (H2O):

Latent heat:  Qb = ∫L→GPdV = area in P-V diagr.

When latent heat:  Qb > 0: 

1st-order phase transition.

At the critical point latent heat Qb = 0: 

Continuous phase transition
(or 2nd order phase transition)

Boiling water:
Order parameter = ρliquid − ρgas

| order param. |

↑ Vc
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3. The liquid-gas transition

P

V

Equation of State:
Pressure P = P(V, T, …)

Example:
Ideal gas: P = RT/V = ρkT Gas equation

( mole volume V, density ρ=NA/V, , R = NAk )

Real gas: van der Waals-equation
(P + a/V2)(V − b) = RT

( attractive ↑ ↑ repulsive part
of molecular potential )

or P = RT/(V − b) −a/V2 

same in p-ρ diagram:
G L+G L

P

ρ
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p-T phase diagram

P

T

p-T phase diagram for water (H2O):

T≥TC:
←neither gas

nor liquid

TC
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p-V-T phase diagram

plus various projections:
Carbon dioxide (CO2).
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Bild Yeomans p. 28:

Reduced van der Waals-equation:

(P/PC +3(VC/V)2) (V/VC−⅓) = 8RTC

with critical values PC, VC, TC

(or ρC = NA/VC)
seems to be universal:

G L+G L

ρ/ρC

T/TC
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Critical exponents of v.d.Waals gas

ρ L
L+G ∆ρ
2 phases single phase

G
TC T

1. Order parameter:
Like in the case of the ferromagnet, 
near T ~ TC the order parameter
depends on T as: ρL − ρG ~ (T − TC)β
with a critical exponent β.

('mean field': β = ½)

2. 'Critical isotherm':
At T = TC this isotherme is p − pC ~ |ρ−ρC|δ
with a critical exponent δ

('mean field': δ = 3)

same in p-V diagram: p         single phase

pc

G

L L+G Tc

Vc V

critical
← isotherm

critical
← isotherm

P

ρ
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3. Compressibility κ=(1/V)∂V/∂p diverges:
above TC: κ+ ~ |T − TC|−γ G
below TC: κ− = ½ κ+ L

(= 'susceptibility' against external parameter p) 
with a critical exponent γ

('mean field': γ = 1)

4. Specific heat diverges:
C ~ |T − TC|−α

with a critical exponent α

('mean field': α = 0)

κ
L G
κ−          κ+

TC                 T

C
L G

TC                 T



Critical exponents from v.d.W.-equation
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From a detailed inspection of the v.d.W.-equation near T = TC

one finds (Domb S. 55):

order parameter ρL − ρG ~ (T − TC)½ i.e. β = ½
critical isotherm p − pC ~ |V − Vc|δ i.e. δ = 3
compressibility κ ~ |T − TC|−γ i.e. γ = 1
specific heat has only discontinuity i.e. α = 0

Lit: C. Domb, The Critical Point, Taylor and Francis 1996
c−c0(T)

TC T

L G
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Measured critical exponents
Domb p. 22: Yeomans p. 28: Domb p. 206:
critical isotherm has δ > 3 specific heat has a small α > 0 phase-separatrix has β ≈ ⅓:

P

V

C T/T0

T ρ/ρ0
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Internal energy: U = <E> = <Ekin> + <Epot>, 

with temperature T defined by kT = <Ekin> 

1st law of thermodynamics: dU = δQ + δW
Internal energy U changes when external energy is added
either as random molecular energy, called heat Q, 
or as 'directed' macroscopic energy, called work W = −PdV:

dU = δQ − P dV

for reversible δQ:   dS = δQ/T:
dU = T dS − P dV

Energy-content also changes with particle number N :

dU = T dS − p dV + µ dN

with chemical potential µ = ∂U/∂N.

At equilibrium: U → min, i.e. dU = 0

only possible if δQ = TdS = 0, dV = 0, dN = 0 
i.e. Q = const, V = const, N = const. : not very interesting



Free energy
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More useful in condensed matter physics is the

Free energy: F = U − TS → dF = −S dT − P dV + µ dN (physics)
At equilibrium: F → min, i.e. dF = 0: 
T = const, V = const, N = const, but heat exchange δQ ≠ 0 is permitted.

Taylor: (mathematics)

From comparison of both one finds:
From a given free energy F = F(T, V, N) all state variables can be obtained:

Entropy S = −∂F/∂T
Pressure P = −∂F/∂V = P(T,V,N) = equation of state
Chemical potential µ =  ∂F/∂N, …

N
N
FV

V
FT

T
FF dddd

∂
∂+

∂
∂+

∂
∂=
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From free energy → everything else

(β=1/kT)

More precisely: 
From
Partition function (more later)

Z = ∑rexp(−Er/kT)  
or
Z = ∫∫phase space" "

summed over all possible 
states with energies Er.

master plan
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Same 'master plan' for magnetism

In solid: dV≈0.

With magnetic field B (or H):

Free energy
dF = −SdT −MdB

i.e. F = F(T,B) 

with magnetization
M = −∂F/∂B, 

and magn. susceptibility
χ = ∂M/∂B

Yeomans p.17:

(β=1/kT)

master plan



Example paramagnetism
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Hamiltonian  Ĥ = −µ ·B = −µB for B=Bz and magnetic moment µ
spin ½-system with two states for each molecule:
energy/molecule E± = ±µB
partition function for N molecules:

β = 1/kT

magnetisation

Saturation magnetis. M0 = Nµ
Susceptibility χ = ∂M/∂B ≈ Nµ2/kT:    χ ~ 1/T

= Curie Law, for kT >> µB
0 2 4 6 8

TEMPERATUR

0.25
0.5

0.75
1

1.25
1.5

1.75
2

TEATILIBITPEZSUS

CURIE-GESETZ

( ) NEEN

r
E eeeZ r )( −+ −−− +== ∑ βββ

−+

−+

−−

−−

+
−=

∂
∂=>< EE

EE

ee
eeM

B
Z

Z
NkTM ββ

ββ

0
1  

kT
B

kT
BNM µµµ ≈⎟
⎠
⎞

⎜
⎝
⎛=>< tanh  

1/T

∂M/∂B

M

B

χ

T

PM:
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5. Landau model of magnetism

Landau 1930 1-dim magnet:
Lit: Landau Lifschitz 5: Statistical Physics ch. XIV

'Landau' free energy of ferromagnet F = F(m) 
with magnetization m = <M>/M0 (mean field approx.)
(or any other continuous phase transition)

Order parameter m Taylor-expanded about m=0:
F = F0(T) + (½a' m2 + ¼λ m4)V

has only even powers of m, as F does not depend on sign of m,
λ>0 to contain system.

2-dim magnet:
Assume a' changes sign at T=TC (linear approx.)

a' = a·(T − TC) 

Free energy density f = (F − F0)/V then is:

f = ½a(T − TC) m2 + ¼λ m4

F

M

T<TC

T>TC

FM

PM
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Spontaneous magnetization in zero external field

Landau: f = ½a(T − TC) m2 + ¼λ m4

At equilibrium → minimum of free energy:
∂f/∂m = a(T − TC) m + λ m3 = 0

1st solution order param. m = 0:  
extremum of f is a minimum only for T ≥ TC:  PM

2nd solution: m = ±(a/λ)½(TC − T)½ (1)
m is real only for T < TC: FM

has critical exponent β = ½. ↨
Same result as for order parameter of v.d.W. gas:

ρL − ρG ~ (TC − T)½.

N.B.: above TC: high symmetry, group S
below TC: lower symmetry, group S'.
necessarily: S' = subgroup of S
(see Landau Lifschitz 5 §145)
"spontaneous breaking of symmetry"

ρ L

L+G ∆ρ
2 phases 1 phase

G

TC T

m

T

TC

FM PM

N.B:
↑curve m(T)
↓phase diagram ρ-T

phase diagram h-T:
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Magnetization in external field

Magnetic energy in external magnetic field B:
fM = −BM = −hm with field parameter h = BM0:

i.e.: f = ½a(T−TC) m2 + ¼λ m4 − hm
At equilibrium: from

∂f/∂m = a(T−TC) m + λ m3 − h = 0      (2)
follows magnetization ±m(T), see Fig., in particular:

critical magnetization at T = TC:
h = λm3

has critical exponent δ = 3.

Similar result as for critical isotherm of v.d.W. gas:
p − pC ~ |ρ − ρC|3 , see below:

↔

m FM PM

T
h=0↑ ↓h>0

TC

↑h<0

critical
magnetization →

←FM

←PM

critical
← isotherm

P

ρ
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Magnetic susceptibility

Susceptibility χ = ∂m/∂h diverges at T = TC.            Reason: Free energy has flat bottom
Proof: At equilibrium, from (2): at T=TC:    f

φ(m) ≡ a(T − TC) m + λ m3 = h
∂φ/∂h = (∂φ/∂m)·(∂m/∂h) =
(a(T − TC) + 3λ m2) χ+ = 1       (3) ↔ m

above TC: m = 0 in (3): a(T − TC) χ+ = 1 
χ+ = [a(T−TC)]−1 Curie-Weiss law PM
has critical exponent γ = 1

below TC:m2 = (a/λ)(TC−T) from (1), in (3):
[−a(TC− T) + 3λ (a/λ)(TC − T)] χ− = [2a(TC − T)] χ− = 1

χ− = [2a(TC − T)]−1 = ½χ+. ↨
Curie-Weiss law FM

Same result as for v.d.W.-compressibility κ− and κ+:

χ
FM PM
χ− χ+

TC                 T

κ
L G
κ−          κ+

TC                 T
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Specific heat in zero field

s − s0(T)

TC T

Value of energy density f = ½a(T − TC) m2 + ¼λ m4

at its minimum (i.e. in equilibrium):
above TC:  m = 0 → f = 0
below TC:  m2 = (a/λ)(TC − T) from (1) →

f = −½(a2/λ)(TC − T)2

Entropy is lowered linearly below TC:
above TC: s − s0(T) = −∂f/∂T = 0 PM
below TC: s − s0(T) = −(a2/λ)(TC − T) FM
Specific heat makes a jump at TC:
aboveTC: c − c0(T) = −∂s/∂T = 0 PM
below TC: c − c0(T) = −T ∂s/∂T = (a2/λ)T FM
i.e. has critical exponent α = 0.
Same result as for specific heat of v.d.W. gas:

c − c0(T)

TC T

FM PM

c − c (T)
↨

0

TC T

L G
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Compare with experiment
Magnetization: M ~ (TC − T)β Susceptibility: χ+(T) ~ (T − TC)−γ

χ−(T) = ½ χ+(T):

χ−(T)

χ+(T)

M

T/TC

χ

T

Landau or
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zero

T/K

B0/T
Yeomans S. 6
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Related: catastrophe theory
Arnol'd-classification of different types of catastrophes is due to a 
deep connection with simple Lie groups: 

A0 - a non singular point
A1 - a local extrema, either a stable minimum 

or unstable maximum 
A2 - the fold ↔ van der Waals:
A3 - the cusp 
A4 - the swallowtail 
A5 - the butterfly 
Ak - an infinite sequence of one variable forms 
D4- - the elliptical umbilic 
D4

+ - the hyperbolic umbilic 
D5 - the parabolic umbilic 
Dk - an infinite sequence of further umbilic forms 
E6 - the symbolic umbilic
E7, E8

Here An is the algebra of SU(n + 1); Dn is the algebra of SO(2n), 
while Ek are three of five exceptional compact Lie algebras.
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6. Ginzburg-Landau theory of superconductivity
'Microscopic' BCS theory: Energy gap induced by attractive electron-electron interaction

(mock-BCS, from Kittel: Solid State Physic, Appendix E):

Egap

Energy gap induced by attractive nucleon-nucleon interaction
(from Maier-Kuckuck: Kernphysik p. 68):

Cooper pairs: charge e* = 2e
mass m* = 2me

density |ψ|2 = ns/2, 
with complex ψ(r) = (ns/2)½ eiθ(r)

(ns = density of superconducting electrons = 2×density of Cooper pairs)

+1      nc=normal-cond.
0

−4      sc=super-cond. Ĥ =

5 e l e c t r o n s→ 5 
e
l
e
c
t
r
o
n
s
↓

← sc

nc

Energy-

= diagonal matrix
Electron-

sc↓ __nc____
E = 

V =

ĤV = EV, i.e.
V †ĤV = E, with:



Homogeneous superconductor in zero field
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In superconductivity, the 'macroscopic' mean field
approximation is valid to temperatures very close to Tc, 
as ψ(r) of a Bose condensate cannot fluctuate strongly.

a) without magnetic field B = 0, 
density of s.c. electrons ns = const. in volume V

Landau free energy near TC (with Fn for normal conduction):
Fs = Fn + (½a·(T −TC) |ψs|2 + ¼λ |ψs|4) V

with order parameter ψs ~ ns
½, transition temperature TC.

From ∂Fs/∂ψs= 0, the density of s-c electrons in the minimum is:
above TC: ns = |ψs|2 = 0 nc
below TC: ns = |ψs|2 = (a/λ)(TC − T) sc

At minimum, the value of F is:
above TC: Fs = Fn nc
below TC: Fs = Fn− ¼(a2/λ)(TC − T)2 V sc
In the sc-state the free energy is lowered (s-cond. energy gap)

nc
↑

Equil.: <ns>=0
<ns>

<ns>
↑

Equil.: <ns>≠0

T ≥ TC:

T < TC:

Fs−Fn

nc

Fs−Fn

sc
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Critical magnetic field Bc

b) with magnetic field B ≠ 0: Meissner Effect:
Energy density of the field is B2/2µ0.
If magnetic field energy is so large that Fs > Fn, 
then superconductivity disappears:

Fs = Fn− (a2/4λ)(TC − T)2 V + (B2/2µ0)V > Fn

This the case when B surpasses the critical field
BC = a(µ0/2λ)½(TC − T)   (near TC).   (4)

Experiment: down to T=0, BC can be approximated by
BC ≈ BC0(1 − T 2/TC

2) = BC0(1 − T/TC)(1 + T/TC) Phase diagram:
which is ≈ 2BC0(TC − T)/TC near TC. 

Comparison with (4) gives the pre-factor, 
the zero-temperature critical field

BC0 = ½(µ0/2λ)½ aTC, 
that is the whole BC(T) curve grows linearly with TC.
Experiment:

Bc

T

BC0=0.041T→

↓

←growing TC

below
line:

above line:



Non-uniform superconductor in zero field
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In general a superconductor is not uniform (mixed phases, Meissner effect, etc.):  
order parameter is position dependent: ψ = ψ(r). (short: ψ for ψs).

If free-energy F is at its minimum for a constant ψ0, 
i.e. F is minimum with respect to all possible variations ∇ψ,
then deviations from ψ0 must be quadratic in ∇ψ (like in elasticity theory),
i.e. the energy penalty for deviations from homogeneity is ~ |∇ψ|2. 

a) without magnetic field B = 0:

Fs = Fn + ∫V (+(ħ2/2m*) |∇ψ|2 + ½a·(T −Tc) |ψ|2 + ¼λ|ψ|4)dV
Fsc = Fnc+ Tsc=Esc kin + Vsc=Esc pot

where the constants have been adjusted so 
the transition to quantum mechanics becomes evident.
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Non-uniform superconductor in magnetic field

b) with magnetic field:
B = B(r) = ∇×A(r), with vector potential A,

A changes momentum mυ of a particle to
p = mυ + eA

but does not change its energy
E = (mυ2)/2m = (p−eA)2/2m

therefore for B ≠ 0 (Ginzburg-Landau, 1950):

Fs = Fn + ∫V (|−iħ∇ψs−e*Aψ|2 /2m* + ½a·(T −Tc) |ψs|2 + ¼λ|ψs|4 + B2/2µ0 − B·M) dV
Fsc = Fnc+ Tsc + Vsc + Efield + Emagn

m*=2me, e*=2e

Lit.: C.P. Poole et al.: Superconductivity, ch.5, Academic Press 1995



Two Ginzburg equations
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Minimum of Fs by variational calculation: functional derivatives give
1st Ginzburg equation ∂Fs/∂ψ = 0
2nd Ginzburg equation ∂Fs/∂A = 0

= two coupled differential equations (see 'small print' next page)
Here we treat only a few special cases: 
plane superconductor with surface in y-z plane: 

a) without magnetic field B = 0:

1st Ginzburg-equation gives the spatial dependence of s.c. amplitude ψ(x):

∂Fs/∂ψ = (ħ2/2m*) d2ψ/dx2 + a(T − TC)ψ + λψ3 = 0

= differential eq. of  the type y'' + y(1 − y2) = 0, 
with solution: y = tanh x,
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small print

from: B. Schmidt, Physics of Supercond., p. 48ff:



Coherence length ξ
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with the right coefficients: ψ(x) = ψ∞ tanh(x/2½ξ) 
with:
Coherence length ξ: ξ2 = ħ2/(m*a(TC− T)), 
i.e. ξ ~ (TC − T)−ν

diverges with critical exponent ν = ½
and pre-factor |ψ∞|2 = a(Tc− T)/λ below TC.

The coherence length ξ gives the distance over which 
the sc-wave function can change significantly.

The density |ψ∞|2 of sc-electrons grows linearly
with distance from the transition temperature:

ψ
vacuum superconductor

ψ∞

x
ξ

ξ
sc nc

TC                 T

|ψ∞|2

TC T
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London penetration depth λL

b) with magnetic field B ≠ 0, 
and only weakly variable ψ(x): 

2nd Ginzburg-equation ∂Fs/∂A = 0 
gives the spatial dependence of the field B(x):

∇2A = A/λL
2 + ψ*∇ψ + … (with ∇2A = (∇2Ax, ∇2Ay,∇2Az))

↑ ≈ 0
With B = (0, 0, Bz), i.e. A = (0, Ay, 0), x = (x, 0, 0):
only ∂2Ay/∂x2 = Ay/λL

2 contributes, and from Bz = ∂Ay/∂x: 
∂2Bz/∂x2 = Bz/λL

2:

Bz(x) = B0exp(−x/λL)

The magnetic field cannot penetrate into the superconductor,
but decays exponentially, which is the Meissner effect:
with London penetration depth λL:  λL

2 = m*/(µ0e*2|ψ∞|2), 
i.e. λL ~ (TC − T)−½ diverges in the same way as coherence length ξ:

Bz
vacuum sc

B0

x
λL

λL
sc nc

TC                 T
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Energy balance
Meissner-effect at the critical field B → BC

+, with sudden expulsion of the magnetic field:

The energy needed to expel the field BC from the volume V is:
Emag = VBC

2/2µ0 > 0. Poole S. 269: 

This energy is taken from the energy gained during
the transition to superconductivity:

Egap= −Emag < 0.

For a given λL, ξ, and surface A: 

In the Meissner boundary layer of thickness λL, 
no field is expelled from the volume λLA:

∆Emag = −λLA BC
2/2µ0 < 0.

In the coherence boundary layer of thickness ξ, 
no Cooper pairs are formed in the volume ξA:

∆Egap = +ξA BC
2/2µ0 > 0. 

Energy balance : ∆E = (ξ − λL)BC
2/2µ0.

Egap

nc sc

nc sc



Superconductor of the 1st and 2nd type
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Superconductor of the 1st type has ∆E > 0, i.e.: 

coherence length ξ > penetration depth λL,
area A is minimized to Meissner boundary layer at the surface
(true for all superconducting elements exept Nb).

Superconductor of the 2nd type has ∆E < 0, i.e.: 

coherence length ξ < penetration depth λL

area A is maximized to many flux tubes,
(true for many superconducting compounds).

From BCS:
The circular currents of the Cooper pairs are quantized, 
each flux tube containing exactly one flux quantum of size

Φ0 = h/2e

Superconductor of the 1st type:

Superconductor of the 2nd type:



Flux-quantisation
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Buckel Supraleitung, p. 150:

Conclusion: 
Mean-field Ginzburg-Landau theory describes the main phenomena
of superconductivity, but is not a microscopic theory like BCS.



7. Gauge invariance of electro-magnetic interaction
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field-tensor:

four-vectors: ∂µ = (∇, i∂/∂t),  jµ = (j, iρ) 

conventional notation: covariant notation:
Maxwell equations, inhomog.:

c2∇×B −∂E/∂t = j/ε0, ∇·E = ρ/ε0 (NB: sum-convention)
continuity-equation:

∇·j +∂ρ/∂t = 0 ( = conserved current)
el.-magn. potentials A, Φ:

B = ∇×A,  E = − ∇Φ
canonical momentum:

D = ∇−ieA, D0 = ∂/∂t + ieΦ
photon is invariant against gauge transformation:

A' = A + ∇θ, Φ' = Φ − (1/c)∂θ/∂t
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⎜
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iEBB
iEBB
iEBB

Fµν

νµνµ jF =∂

0=∂ µµ j

:)  ,( Φµ iA A=

µννµµν AAF ∂−∂=
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θµµµ ∂+= AA '

El.-Dyn. in 
covariant
notation:
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Gauge symmetry U(1) of QED
Gauge invariance = invariance against arbitrary phase shifts:
Is also electron wave function gauge invariant?
Free electron, wave function ψ(x), with x = (x, it):

Global, arbitrary phase shift: ψ' = ψ exp(ieθ) 
does not change probability: |ψ'|2 = |ψ|2

But: Such a global Symmetry is not Lorentz-invariant! 
Reasonable is only an arbitrary position dependent shift in phase θ=θ(x):

ψ'(x) = ψ(x) exp(ieθ(x)) U(1) transformation

Gauge invariance = invariance against local phase shifts = local symmetry
But: If interaction is invariant against phase shifts with arbitrary θ(x):
then a wave function ψ(x): x

can be be changed into anything: ψ'(x): x not helpful

Im ψ

θ
Re ψ



Gauge invariance of Dirac equation …
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Equation of motion ψ(x) of free electron = Dirac equation:

= 4 differential eqs. for the 4 components ψν,
Coefficients = 4-vectors γµ

whose components are matrices, for instance:

Dirac-equation alone is not gauge invariant:
Proof: Transformation   ψ'(x) = ψ(x) exp(ieθ(x))

with chain rule
the Dirac equation changes to:

↑ extra dynamics
hence, after the transformation, Dirac equation no longer holds:
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… requires existence of (massless) photon …
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For Dirac equation to be gauge invariant, i.e. 
for world of electrons to be invariant against arbitrary phase shifts θ(x):
necessarily the photon must exist
which is a gauge invariant vector field Aµ: 
which couples to the electron (with scale factor e = "charge")
(and which obeys Maxwell's equations)

When in Dirac equation ∂µ is replaced by the covariante derivative Dµ: 
then the Dirac equation becomes gauge invariant:

that is with: also:
holds.

Conclusion: Free electrons cannot exist alone, but only together with photons.

ψψ µµµ  )i(D eA−∂=
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… and the conservation of electric charge
Electron in an external potential A: ψ =ψ0exp(i(p−eA)x), 

A change in potential energy by e∆A induces phase shift  exp(ie∆A·x), 
i.e. gauge symmetry, the free choice of local phase, means free choice of local zero of energy

gauge symmetry ↔ conservation of charge:
'Proof' (E. Wigner, quoted in D.H. Perkins: Elementary particle physics, ch. 3.6.1):
Assume the contrary: gauge symmetry exists without charge conservation, 

but enery conservation holds:

No charge conserv.: charge e is created in an electrostatic potential Φ, i.e. A=(0,iΦ), 
with energy cost W;
charge e moves to another location with potential Φ'≠Φ,
with energy cost e(Φ − Φ') ≠ 0,
and disappears with energy gain W'. 

Gauge symmetry: W is independent of eΦ (which determines phase), i.e. W'=−W.

Energy balance: W − W + e(Φ − Φ') ≠ 0 in contradiction to energy conservation
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Noether's theorem

This follows also from Noether's theorem:
Continuous symmetry ↔ conservation law

Further 'trivial' examples:

1. time shift symmetry ↔ energy conservation:
Proof: Dynamics of a system descibed by Hamiltonian H = T + V = E
does not change under an arbitrary time shift dt: dH = (∂H/∂t)dt = 0 
if and only if ∂H/∂t = 0, 
i.e. if and only if energy is conserved: E = const.

2. position shift symmetry ↔ momentum conservation:
Proof: Dynamics does not change under a shift of position dx: dH = ∇H·dx = 0
if and only if ∇H = 0, 
i.e. if and only if dp/dt = −∇V = −∇H = 0: p = const.

using Newtons law with H = p2/2m + V(x))
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8. Higgs mechanism in a superconductor

Goldstone's theorem:
Each spontaneous breaking of a continuous symmetry
creates a massless particle (i.e. an excitation without an energy gap)

= Goldstone Boson

Simple example: Landau ferromagnet

Free energy density f, magnetization density m, magnon:
isotropic interaction in 3-dim:

f = f0 + ½a·(T − TC)|m|2 + ¼λ|m|4

solution above TC is rotationally symmetric:
solution below TC is cylindrically symmetric:

Goldstone mode belonging to broken symmetry = magnon
magnon dispersion relation:

my

<mplane>

θ mx

m=0:



Phase Transitions Graduate Days 
Oct. 2006

57

Goldstone theorem
Example superconductor in zero field, Ginzburg-Landau:
Lagrange density L =Ekin− V, complex s.c. electron ψ =ψ1+iψ2:

Ls = Ln + |∇ψ|2 − ½µ2|ψ|2  − ¼λ'|ψ|4

(rescaled, with µ2=2m*a·(T −TC), λ'=2m*λ, ħ=c=1)

below TC: spontaneous breaking of symmetry,
with fluctuations of amplitude ψ and phase θ about mean <ψ>=(a·(T − TC)/λ)½ ≡ υ:

ψ(x) = (υ + χ(x)) exp(iθ(x)/υ)

With x=(x,it). For small fluctuations χ<<υ, seen from above:
using |∇ψ|2 = |∇χ + i(υ + χ) ∇θ/υ|2 ≈ (∇χ)2 + (∇θ)2 etc. 

inserted into Ls this leads to:
Ls = const. + (∇χ)2 − ½µ2 χ2 = excitation χ of mass µ

+ (∇θ)2 = appearance of Goldstone θ without mass term
+ … = higher order interactions neglected

(at the minimum, linear term −µ2υχ disappears)
(Lagrange density L and its mass terms µ to be discussed later),

iψ2

χ ψ1

θ

<ψ>=0
↑

<ψ>= υ

V(φ)
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Higgs-mechanism in superconductor
Gauge invariance requires interaction with massless field Aµ.
However, in a superconductor, the photon Aµ becomes massive.
Still: Ginzburg-Landau model is gauge invariant (Dr.-thesis Ginzburg ~ 1950)

The reason is what is now called the Higgs mechanism:
When a scalar, gauge invariant field ψ
suffers a spontaneous symmetry breaking, 
then the vectorfield Aµ can become massive, 
without losing its gauge invariance,
while at the same time the Goldstone disappears.

Ginzburg-Landau superconductor of Ch. 6:
Cooper pairs = Higgs field ψ:

Ls = Ln + |∇ψ − i2eAψ|2 − ½µ2|ψ|2 − ¼λ'|ψ|4 − B2/µ0* + B·M
with charge of Cooper pairs e* = 2e.
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Disappearance of the Goldstone boson
As before: Fluctuations of ψ(x) about <ψ> = υ at "bottom of bottle"

ψ(x) = (υ + χ(x)) exp(iθ(x)/υ)

Then |∇ψ − ie*Aψ|2 = |∇χ + i(υ + χ)(∇θ/υ − e*A)|2, with χ<<υ:

if we choose gauge to A=A' + ∇θ/e*υ, this becomes ≈ (∇χ)2 − υ2e*2A2, 
and the massless Goldstone term (∇θ)2 disappears, 
and the photon A becomes massive (but remains gauge invariant):

Ls = const. + (ħ2/2m*) (∇χ)2 − ½µ2|χ|2 = "Higgs" with mass µ
−mph

2A2 = heavy photon with mass mph = υe* = (a·(T − TC)/λ)½ 2e
− B2/2µ0 + B·M = field terms as before

+ some residual terms

The coherence length found before turns out to be ξ = 1/µ (ħ = c = 1),
or ξ = ħ/µc = Compton wave length of the Higgs of mass µ =(4ma·(TC− T))½,
and the London penetration depth λL = 1/mph, or λL = ħ/mphc
= Compton wave length of the heavy photon

N.B.: number of degrees of freedom remains the same

iψ2

υ χ
ψ1

θ
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Summary superconductivity
Mean field theory of superconductivity (Ginzburg-Landau): 

Phase transition at transition temperature TC = spontaneus symmetry breaking

Superconductor has 2 characteristic scales:

1. of the order parameter = superconducting condensate ψ,
whose fluctuations lead to the Higgs field χ of mass µ
whose Compton wavelength ħ/µc
= coherence length ξ of the condensate.

2. of the magnetic field, via the Meissner effect: 
The field-producing virtual photons become massive,
with mass mph = e*υ = e*<ф>
Hence the magnetic field B has only a limited range given by
the Compton wavelength ħ/mphc of the massive photon
= London penetration depth λL

but no Goldstone survives. The theory remains gauge invariant.

ψs
vacuum supercond.

x
ξ = ħ/µc

B
vacuum supercond

B0

x
λL = ħ/mphc
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8. Electroweak unification
Preliminaries, Lit.: U. Mosel, Fields, Symmetries, and Quarks, Springer, 1989, Ch. 3.
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Electro-magnetic vs. weak interactions

Differences between el.-magn. and weak interactions (numbers for E=0):

Problem El.-magn. interact Weak interaction solution of problem

Strength of interaction α = 1/137 10−5

Range of interaction ∞ λC(W) ~ 10−16 cm

→ Mass int. particle mγ = 0 mW ~ 90 GeV

gauge invariance yes no

Parity conservation yes no jµ=ψ' γµ(1 − γ5)ψ

Renormalizibility yes no t'Hooft

Higgs-mechanism
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Standard Model: the particles

SU(2)×U(1):
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Field tensors etc. in QED and in Standard Model
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SU(2) × U(1) gauge transformations
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Lagrangian of QED and of Standard Model
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Summary: non-Abelian gauge theories

Symm. group U(1) SU(2) SU(3)

Type Abelian non-Abelian (Yang-Mills)

Example QED isospin (strong, weak) flavour, colour QCD

Multiplet (e); (p) ... (p,n); (u,d); (e,νe) ... (u,d,s); (r,b,g) ...

Particle φ'=φexp(ieθ(x)) φ'=φexp(igα(x)·τ/2) φ'=φexp(igSαi(x)·λi)

"Generator" 1 3 Pauli matrices τ 8 Gell-Mann matr. λi

Int.-boson m=0 γ: A'=Aµ+∂µθ Aµ'=Aµ−∂µα−gα×Aµ gluonsGµi'=Gµi−∂µαi−gsfijkαjGµk

Covariant 
derivative Dµ=∂µ−ieAµ Dµ=∂µ+igτ·Aµ/2 Dµ=∂µ+igsλi·Gµi/2

Indices µ=1,...,4 
for x, y, z, it Aµ=(Aµ

1, Aµ
2, Aµ

3) i = 1,...,8

Gauge
trans-
form.

Sym-
metry
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Standard model

Fix gauge such that Higgs φ = (0, φ(x) )

Fluctuations about new minimum φ(x) = [υ + χ(x)] eiθ(x)/υ as before:

Goldstone disappears, gauge fields W±, Z0 become massive, γ remains massless
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Free energy superconductivity vs. standard model

Ginzburg-Landau:

L = |−iħ∇ψ –2ieAψ|2 − ½µ2 |ψ|2 − ¼λ' |ψ|4 + B2/2µ0 −B·M …

Weinberg-Salam:

L = (Dµφ)† (Dµφ)† –½µ2 (φ†φ) –¼λ (φ†φ)2 – ¼ Wµν Wµν – ¼ Bµν Bµν
+ lepton and quark kinetic energies + …

Comparison of coefficients gives:
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Summary

G.-L.: Uel-mag(1) W.-S.: SUL(2) x UY(1)

order parameter: super-conducting condensate
ψ = ψ1 + iψ2

Higgs doublet
ψ = (ψ1 + iψ2,ψ3 + iψ4)

boson mass generation
by Higgs field:

Meissner effect
mph = e <ψ1>

Higgs mechanism
mW = g <ψ3>

Compton wavelength λ
of interacting boson:

London penetration depth
λL= ħ/(mphc)

range of weak interaction
λW=ħ/(mWc)

Compton wavelength λ
of Higgs:

coherence length
ξ = ħ/(µc)

"coherence length"
λH= ħ/(mHc)
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10. Fluctuations near a phase transitions

Critical opalescence:
Light scattering off density variations
near the critical point of a liquid (freon).

Correlation length ξ ~ mean size of a region of same density
Correlation time τ ~ mean time of existence of such a region

When wavelength of light λ ~ correlation length ξ: 
strong light scattering, transmission goes to zero.

When T → TC, then density fluctuations
on all length scales and all time scales: 
Divergence: ξ→∞, τ → ∞

ξ, τ
L G

TC                 T

P Exp.:

PC

TC

VC V
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Experiment on critical opalescenc

well below TC: below TC near TC above TC:
two phases single phase

Movies:
http://www.physics.brocku.ca/courses/1p23/Heat/Critical_Point_of_Benzene/BENZENE3.MOV

http://groups.physics.umn.edu/demo/thermo/4C5020.html

http://www.physics.brocku.ca/courses/1p23/Heat/Critical_Point_of_Benzene/BENZENE3.MOV
http://groups.physics.umn.edu/demo/thermo/4C5020.html
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Space-time correlations
Fluctuations are described by 'correlation functions',
which tell us, how much the fluctuations are 'in phase' with each other.

The probability, to find particle at time ti at position xi, 
and at a later time tj at position xj,
is given by the space-time correlation function.

Example: density correlation function:
Abbreviation: particle number density ni ≡ n(xi,ti), with time average <ni>:
With ni−<ni> = fluctuations about this average value, 
the pair-correlation function is

Gij ≡ G(xi, xj, ti, tj) = <(ni− <ni>) (nj− <nj>)>

or Gij = <ni nj> − <ni> <nj>
in particular: Gij = 0 for uncorrelated fluctuations <ni nj> = <ni> <nj>
i.e. when the joint probability = product of the single probabilities.

Similarily for spin-spin correlation functions.
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Measurement of the correlation-function G(x,t)

In a homogeneous system: Gij = G(xi, xj, ti, tj) = G(xi−xj, ti−tj).
In a liquid or gas in the average all points (xi, ti) are equivalent, and G = G(x, t).

Measurement by inelastic neutron scattering:

Energy transfer onto the neutron
for instance by a phonon in the probe: 

E−E' = ħ2(k2 − k'2)/2m = ± phonon energy ħω
Momentum transfer onto the neutron:

q = k − k' = (reciprocal lattice vector) ± phonon momentum

Differential inelastic scattering cross section: 
d2σ/dΩdE = σ0 S(q, ω)

Result from scattering theory:
The scattering function S(q, ω) is the space-time Fourier transform
of the correlation function G(x, t).

θ

dΩ

probe↓ ↓detector

q,ħω
k,E

k',E'
θ
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Scattering functions and spatial correlations
S(q, ω) = F.T. of G(x, t) is very general result:

real space: momentum space:
Solid:
Far range order density distrib. of atoms: Bragg peaks:

Liquid:
Short range order

Gas:
Disorder

Image S(q) of 
reciprocal lattice

S(q) of liquid argon
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Scattering functions and time correlations

time signal frequency spectrum

longlived:

damped:

EELS spectrum from
Mg(0001): 
1. elastic peak, 
2. creating a phonon,
3. destroying a phonon

Phonon spectrum of Fe 
islands on W(110) 

3.       1.       2.

3.    1.    2.
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Neutron three-axes spectrometer

primary
neutron
beam
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Critical fluctuations
Fluctuations are intimately linked to the susceptibilities (proof next page):
In a liquid: density fluctuations

<ρ2> − <ρ>2 = kT·κ,     with compressibility κ.

In a magnet: mean square fluctuations of magnetization:
<M2> − <M>2 = kT·χ,  with magnetic susceptibility χ.

In particular:
At the Curie temperature: T=TC the critical magnetic fluctuations 
<M2> − <M>2 diverge like the (static) susceptibility χ,
i.e. closely above TC:    <M2> − <M>2 ~ (T−TC)−1

and closely below TC half of this, because of χ−(T) = ½ χ+(T).

N.B.: This result is closely related to the dissipation-fluctuation theorem:
The susceptibility in general is complex, its real part giving dispersion,
its imaginary part giving absorption, i.e. dissipation of energy. 
In electronics this is known as the Nyquist theorem: 

noise spectrum V(ω)=4kT·resistivity R(ω).
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Proof of: fluctuations ~ susceptibility

master planReminder:
Mean value of an observable M: 
<M> = ∑r M e−βEr/ ∑r e−βEr = ∑r M e−βEr /Z

with partition function Z = ∑r e−βEr

Proof of: <M2> − <M>2 = kT·χ
LHS = RHS

RHS: χ = ∂M/∂H = −∂2F/∂H2 = kT ∂2(lnZ)/∂H2

= Z−1∂2Z/∂H2 − Z−2 (∂Z/∂H)2

LHS: <M2> − <M>2, and Emag = − M·H:
<M>  ≡ ∑r M e−Er/kT /Z

= ∑r (∂Er/∂H) e−Er/kT/Z= −Z−1 ∂Z/∂H

<M2> ≡ ∑r M2 e−Er/kT /Z = Z−1(∂2Z/∂H2) 
→ RHS = LHS
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Measurement of magnetic critical opalescence

Staatsexamens-Arbeit N. Thake 1999

χ+(T) ~ (T−TC)−γ
χ−(T) = ½ χ+(T)
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Correlation function near the critical point

For many systems the spatial correlation function decays with distance r like:
G(r) ~ exp(−r/ξ)/rn

Near the critical point ξ diverges like
ξ ~ |T − TC|−ν, 

and the correlation function becomes
G(r) ~ 1/rd+2−η,

with dimension d, and with two further critical exponents ν and η.
Again, the critical exponents are not independent from each other.
In total, we will find, we need only two independent quantities.
At the moment, we note that empirically the following relations hold:

α + 2β + γ = 2
α + β(1 + δ) = 2
γ = (2 − η)ν
dν = 2 − α

so there are only 2 independent critical exponents.
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11. Ising model
2 kinds of particles on a lattice, with next-neighbour (NN) interaction

Examples: magnet: alloy: lattice gas:
↓↓↑↓↓↑↑↑↓↑↓ ●○○●○●● ○ · ○ · · ○ · ○○ ·

(=adatoms on surface)
Ferromagnet: ↓ ↓ ↑ ↓ ↓ ↑ ↑ ↑ ↓ ↑ ↓

i: 1 2 3 … N spins si,   (abbr. for szi)
si: − − + − − + + + − + − 2N possible configurations

Interaction energy for equal neighbours E = −J
Interaction energy for unequal neighbours E = +J,    (J = const.)

E/J: + − − + − + + − − −
"     "         sisi+1: + − − + − + + − − −

and E = −J(+1−1−1+1−1+1+1−1−1−1) for this configuration

= Ising-Model with Hamiltonian
1

1

H +
=
∑−= i

N

i
i ssJ
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Example brass
From this we expect that an alloy should behave exactly like a ferromagnet, 

what, indeed, it does.
Brass = copper-zinc alloy (55-90% Cu) T < TC = 733K: 

Order-disorder phase transition: ordered below TC:    ●○●○●○●○
unordered above TC:    ●○○●○●●○

(cf. melting point: TSm≈ 1200K)

Order parameter = difference in atomic sublattice concentration
measured via intensity I of a neutron Bragg-peak:

with reduced temperature t = (TC − T)/TC
order-parameter is I = I0 t β
or log(I/I0) = β log t:

with critical exponent β:

Experiment: β = 0.31 like 3-dim ferromagnet
(cf. 'mean field': β = ½)

J. Als-Nielsen (1976):

I

TC T
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Critical scattering from brass

From neutron small-angle scattering:
mean square fluctuation
<n2> − <n>2 ~ χ = susceptibility:

χ+(T) ~ (T−TC)−γ

χ−(T) = ½ χ+(T)

or log χ± ~ −γ log t
with critical exponent γ:

Experiment: γ = 1.252(6)
like ferromagnet

(cf. 'mean field': γ = 1)

J. Als-Nielsen (1976):
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a) Ising at H=0

1-dimensional Ising, NN-interaction:
Partition function under cyclic boundary conditions: 

Z = ∑2^N config.exp(−Ĥ/kT)

Z = ∑s1,s2,…,sN=±1 exp[(s1s2+s2s3+…+sNs1) J/kT

Z = ∑…exp(s1s2 J/kT)×exp(s2s3 J/kT) ×...×exp(sNs1J/kT),
with sisi+1= ±1

Z = ∑ product of transfer matrix elements Vi i+1= exp(sisi+1J/kT)
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n×n transfer matrices

Transfer matrices
(Vij) in general are n×n matrices if on each of N lattice sites n different config's:

Partition function
Z = ∑ i,j,…m=1,n Vij Vjk … Vmi

(N indices↑ in n ↑configs.) (↑product von N matrix elements)

Example: matrix element Vij = exp(−Φij/kT), Φij = potential, or = sisi+1J from prec. page

Z = ∑i=1,n(VN)ii = trace VN = ∑i=1,n λi
N, with eigenvalues λi of matrix V.

Example N=2: element on the diagonal of VN is (V2)ii = ∑j=1,n Vij Vji,
from definition of matrix product

For particle number N >> 1, and eigenvalue λi ≤ 1: 
only the largest eigenvalue λ0

N of the transfer-matrix contributes as λ0
N, i.e. 

free energy F = −kT ln Z ≈ −kT ln λ0
N = −νRT ln λ0 , with Nk=νRT.
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Ising at H=0, spin ½
1-dim, NN, s = ½: Mathematica:

Transfer  matrix

With x = J/kT transfer matrix V 

has eigenvalues λ+ = ex + e−x = 2 cosh x
λ− = ex − e−x = 2 sinh x < λ+

and eigenvectors (−1,1), (1,1).

Partition function Z ≈ λ+
N = (2cosh x)N:

free energy F = −NkT ln(2cosh x), mit Nk=νR

at low temperature T = 0, i.e. x →∞:
F ≈ −NkT ln ex = −NkT x
F ≈ −NJ

i.e. saturated ferromagnet:  
↑↑↑↑↑↑↑↑↑

1-
1

   

s       1  1    

//

//
i1 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

==

−

−
+

kTJkTJ

kTJkTJ
i

ee
eeV

          -s
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b) Ising at H≠0

1-dim, NN, s = ½:

Transfer matrix

with x = J/kT, y = H/kT transfer matrix V 

has eigenvalues λ± = ex cosh y ± (e2x sinh2 y +e−2x)½, 
with maximum eigenvalue λ0 = λ+,

i.e. the free energy is F ≈ −NkT ln λ+

Magnetization:

1-
1

    

s       1  1    
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Critical point in the Ising model

1-dim, NN, s = ½:
arbitrary temperature T > 0, magnetic field H = 0, i.e. y = 0:
Magnetization <s> = 0
i.e. no spontaneous magnetization: PM

Temperature T = 0: spontaneous magnetization 
<s> → exey/(e2xe2y)½ → ±1 

for magnetic field H → 0±

limH→0±limT→0<s> = ±1

i.e. in the 1-dimensional Ising-Model there is 
no phase transition at finite temperature T > 0, 
the only phase transition PM → FM being at TC = 0K

Very general: There can be no long-range order in one dimension.
↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

Destruction of long-range order with energy effort → 0

<S>

+1■

FM PM
T

TC=0

−1■
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Critical fluctuations in the Ising model

Spin-Spin correlation funktion in an isotropic and translationally invariant system was
GR = <s0 sR> − <s0> <sR>.

At large distance R correlation decays as GR ~ exp(−r/ξ).

i.e. correlation length ξ is given by

ξ −1 = limR→∞[(−1/R) ln GR ],

ξ −1 = limR→∞[(−1/R) ln|<s0 sR> − <s0> <sR>|],

with   <s0 sR> = ZN
−1∑{s}s0sR exp(−ĤN/kT)  etc.

Using the transfer matrices one can show,
that for large N and for R →∞:

ξ −1 = −ln (λ1/λ0),

with the largest and second-largest eigenvalues λ0 und λ1.
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Correlation function and length for s=½

for s = ½ the correlation length becomes:
ξ −1 = −ln (λ+/λ−),

with the eigenvalues λ± = ex cosh y ± (e2x sinh2 y +e−2x)½

and x=J/kT, y=H/kT

The correlation function in the limiting case H = 0 becomes:
ΓR = tanhR(J/kT)

ΓR

kT = J/4

kT = J/2

kT = J
R
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Ising models, state of the art

Dimension d = 1, spin I = ½, field H ≠ 0: solved Ising 1925
Dimension d = 2, spin I = ½, field H = 0: solved Onsager 1944
Dimension d = 2, spin I > ½, 

or field H ≠ 0, 
or over-nest neighbours: unsolved

Dimension d = 3: unsolved
Dimension d = 4 ≡ mean field
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Ising in 2-dim (Onsager)

movie Ising model
(TC = 2.27, lattice size 200)
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12. Scale invariance and renormalization
Mean field: Averaging over all fluctuations is not permitted
because fluctuation amplitudes diverge at the critical point.

Way out: successive averaging, separately for each scale,
starting with a small length scale L << coherence length ξ

(when working in real space). 

Example for d = 2 dimensional ('block-spin') iteration process: 
Divide systems in blocks of volume Ld = 32 = 9 cells.
1. Take a majority vote in each block.
2. Combine the cells in a block and assign the majority vote to the

cell.
3. Shrink new cells to the size of the original cells and renumber

them. Number of configurations shrinks from 29 = 512 to 21 = 2.
4. 'Renormalize' the interaction Ĥ between the averaged elements

such that the new partition function stays the same: 
ZN'' = ∑2^N' config. e−βĤ' = ∑2^N config. e−βĤ= ZN ,

so that the physics remains the same (scale invariance). Go to 1.

+ − + + − − + + −

− − + − + + − + −

+ + − − + + − −

− + − + − − − + −

+ − − + + + + − +

+ + − − − + + − +

+ − + − + − − + −

− + − + + − + + −

+ − + + − − + − −

+ + −

− + +

+ − −

+ + −

− + +

+ − −
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Block-spin operation in 2-dim.
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Block-spin operation in 2-dim.: T=TC
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Transformation of reduced temperature and field

At each iteration step: 
coherence length shrinks from ξ to ξ ' = ξ /L,
that is temperature T moves away fromTC, 
either to higher T →∞ or to lower T → 0 temperatures:

Under an iteration the reduced temperature t = |(T − TC)/TC| changes 
from t to t' = g(L) t, the function g(L) is to be determined:
Upon two iterations, successive shrinking is by L1, then by L2, in total by L1L2. 
Reduced temperature changes to t' = g(L2) g(L1) t = g(L1L2) t.
A function with the property g(L2) g(L1) = g(L1L2) necessarily has the form g(L) = L y,
Check: L1

y L2 
y = (L1L2) y.

Hence the reduced temperature t transforms as: t' = L y t with exponent y > 0.
Same argument for magnetic field: it increases when coherence length shrinks:
i.e. reduced field h transforms as: h' = Lx h with exponent x > 0.
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Critical exponent relations from scaling

master planDuring shrinking, densities increase by Ld, 
in particular free energy density f grows as:

f (t', h') = Ld f (t, h),
or f (t, h) = L−d f (L y t, Lx h).
From this property of the free energy
we can derive the relations 
between the critical exponents:

1. Order parameter magnetization: 
m = −∂f (t, h), /∂h|h→0

= L−d Lx ∂f (Ly t, Lx h)/∂h|h→0;
this holds for any L, in particular for
|Ly t| = 1, i.e. L = t−1/y:
m = | t |(d−x)/y ∂f (±1, 0)/∂h = const. | t |β,
with critical exponent β = (d − x)/y.
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Critical exponent relations from scaling
With similar arguments:
2. Susceptibility χ = −∂2f (t, h)/∂h2| h→0 ~ | t |−γ, 

with critical exponent γ = (2x − d)/y

3. Critical isotherm m = − ∂f (t, h)/∂h| t→0 ~ | h |1/δ

with critical exponent δ = x/(d − x)

4. Specific heat (h=0) CV = − ∂2f(t, 0)/∂t2 ~ | t |−α

with critical exponent α = 2 −d /y

5. Coherence length ξ ~ | t |−ν

with critical exponent ν =1/y

6. Correlation function G ~ 1/r d−2+η

with critical exponent η = 2 + d − 2x

which can in principle be resolved to write all 
critical exponents as functions of two variables x and y.
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Renormalization
In each iteration step the Hamiltonian is renormalized:

Ĥ' = R(Ĥ), Ĥ'' = R(Ĥ '), etc., 
and with each step in parameter space (t, h) 
one moves further away from the critical temperature TC (or t = 0).

Find in parameter space the point where Ĥ is a fixed point under R:
Ĥ* = R(Ĥ*).

There, also temperature and field are fixed points under R:
t* = Ly t*, h* = Lx h* for all L: 

i.e.: t* = 0 (T = TC), and h* = 0
(or t* = ∞, h* = ∞ at T = ∞).

At TC the correlation length ξ no longer changes under R:
ξ* = ξ*/L for all scales L, so ξ* = ∞ at TC

(or ξ* = 0 for T →∞).

Investigate the iteration trajectories near this fixed points
and derive from them the critical exponents.
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The universality classes of continuous phase transit.

The critical exponents depend on only two paramters x and y. 
Can these take any value? 

No, because they can be shown to depend only on 
two other geometrical entities: 
1. the spatial dimensionality d of the system
2. the dimensionality n of the order parameter

Example: Magnetization M:
n = 1: Ising model sz = ±1 in d = 1, 2, 3 dimensions
n = 2: xy-model with planar spin Mxy moving in x-y plane
n = 3: Heisenberg model with 3-vector M.

As d and n are discrete numbers, there is a countable number of 
universality classes (d, n), and within each class the
critical behaviour in continuous phase transitions is identical.
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Values of the critical exponents for (d, n)

with ε = 4 − d:

The higher the dimension, the less the system is disturbed by fluctuations.
(example: Domino in various dimensions)
For d = 4, we are back at the mean field results.
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Critical exponents β and γ
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Well known universality classes
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13. Phase transitions in the universe
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A possible GUT symmetry breaking chain
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Inflation

Lit: A. Linde: Particle physics and inflationary cosmology.

Inflation:
If Hubble constant is not a constant, H = å/a = const., 
then there automatically is inflation: a = a0 e+Ht.

But H ≠ const.: (å/a)2 + k/a2 = (8π/3) Gρ

Hot big bang model: solution a(t) ~ t½ relativistic
solution a(t) ~ t3/2 today

Flat universe for k = 0, i.e. ρ = ρC = 3H2/8πG
i.e. Ω = ρ/ρC = 1



Phase Transitions Graduate Days 
Oct. 2006

109

Flat universe
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Inflation mechanism
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Self reproducing cosmos
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