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1. Introduction

Literature:

J.M. Yeomans: Statistical mechanics of phase transitions
Oxford 1992, 144 S, ca. 60 €
readable and compact

P.M. Chaikin, T.C. Lubensky: Principles of condensed matter physics
Cambridge 1995, 684 S, ca. 50 €
concise, almost exclusively on phase transitions

[.D. Lawrie: A unified grand tour of theoretical physics
Bristol 1990, 371 S, ca. 50 €
really grand tour with many analogies

P. Davies: The New Physics
Cambridge 1989, 500 S, ca. 50 €
in-bed reading

other sources will be given 'on the ride'
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Phase transitions in Heidelberg physics dep't.

« Particle physics Standard model ...

* Nuclear physics Quark-gluon transition
Liquid-gas transition ...

* Atomic physics Bose-Einstein
Laser

* Condensed matter Glass transition
Surfaces
Biophysics ...

* Environmental physics  Condensation
Aggregation
Percolation ...

* Astrophysics, Cosmology — next page
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History of the universe

Phase transitions of the vacuum:

Transition Temperature Time
Planck 1019e¢V ~0's
GUT’s ? ?
Inflation ? ?
Electro-weak 100 GeV 10-12g

Phase transitions of matter, i.e. freeze out of:

Quark-gluon plasma to nucleons 100 GeV? 10-12s ?
Nucleons to nuclei 1 MeV ls
Atoms 10 eV

10°a
Galaxies 3K today
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Topics not treated

Phase transitions are a subfield of non-linear physics

Not treated are these 'critical phenomena':

Route to chaos
Turbulence
Self organized

criticality (forest fires, avalanches, ...)

Also not treated are these topics on phase transitions:

Bose-Einstein condensates

Superfluidity

Quark-Gluon Plasma
Quantum phase transitions

Aggregates
Fragmentation
Percolation
Liquid crystals

Isolator-metal transitions
Topological defects

Traffic jams
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2. Phenomenology

"Phenomenology of phase transitions"

derived from @aive = I appear, shine:
'phase’ of moon as a periodic 'phenomenon’,
'phase’ = aggregate state as 'phenomenon’,
'phantasy’, 'fancy’, ...

Four 'elements":

* earth =solid

« water = liquid

e air =gas

 fire =plasma

are the four aggregate states.
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Control parameter

Phase transition = sudden change of the state of a system (probe)
upon a small change of an external parameter:

more general:

parameter reaches 'critical value'.

sudden shifts in behavior

arising from small changes in circumstances

In most of the cases treated in this lecture this control-parameter is temperature

(it can also be pressure, atomic composition,

connectivity, traffic density, public mood, taxation rate, ...):

st example: magnet

here:

The transition i1s an order-disorder transition:

Iron (Fe):

T = critical temperature:

below 7.: ferromagnet FM :
above T.: paramagnet PM 3

- F

i

T, c~ Curie temperature it

T(Fe)=744° C (dark red glow)
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http://www.physics.carleton.ca/~watson/LinR_course/cosmology/gifs/High_temp_Ferromagnet.gif

Order parameter

Below the critical temperature the probe suddenly
acquires a property, described by a parameter M:

below T: M # 0,
which it did not have above the critical temperature:

above T-: M= 0.
This parameter M is called the order-parameter:

Our example:
Order parameter = magnetisation M

(natura facit saltus)

N.B.: Disorder: high symmetry:
!
Order: low symmetry:
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Critical exponent

Observation:
Near 7. the order M parameter depends on
temperature T like:

above T.: M(T')=0 PM M,
below I'.: M(T)=M,(1-T/T.)) FM

with critical exponent 5.

Examples: M(T)~N (I—T):
critical exponent f = "2
M(T)~3N(T.—T):

critical exponent 5 =3
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Comparison with experiment

With reduced temperature

t=(T.— 1T,
and m = M/M,:
the order parameter scales with temperature
as m =t
or Inm=pInt

Integrated intensity [auu.]

M(T) s | | -
NaV,0.
s Q=2 s |
EI:":I [ ]_E. T T TTTT ™T T T 111 =
2| B=049(2)
o0 |- 2f |
3| _
00 |- & log-log | linear- _
i M“]m ——==e' linear I
[-= ] =
ole Lo B
1] 10 20 30 T

Tem perature [K]

Temperature dependence of magnetisation
measured by magnetic scattering of x-rays
(European Synchrotron Radiation Facility)
or of neutrons (Institut Laue Langevin)
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Grenoble

—Belle
donne
—Bastille
general view of Grenoble and the Polygone Scientifique
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A 'run-away' phenomenon

Why are phase transistions so sudden?
2nd example: liquid

below 7.: liquid L
above T.:gas G

Example of boiling water:
when a bond between 2 molecules breaks due to a thermal fluctuation,
then there is an increased probability that a 2" bond of the molecule
with another neighbour breaks, too.

below T.: broken bond heals, before 2"¢ bond breaks — water in boiler is noisy
above T.: broken bond does not heal, before 2" bond breaks — water boils:

A 'run-away' or 'critical' phenomenon: L — G
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http://www.nyu.edu/pages/mathmol/modules/water/dimer.mpg
http://www.nyu.edu/pages/mathmol/modules/water/water_hbond.gif

[Latent heat

Heat a block of ice: Water (H,0):
Melting S — L boiling: 7,=100°—
Transition: order — short range order :

- melting 7= 00—
Boiling L — G

Transition: short range order — disorder

Rogular Addition of heat ——F=

S| L] |G-

Breaking of bonds requires energy = latent heat

= difference in electrostatic molecular potential,

heat of melting Q_ 1

without change in temperature, heat of evaporation @, 1

1.e. same kinetic energy of molecules.

At critical temperature 7.
Addition of heat only changes mass ratios
ice/water or water/vapor, but not the temperature

Phase Transitions Graduate Days 14
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Divergence of heat capacity

When there is latent heat, the heat capacity dO/dT diverges.

— - —_— — as —_—
' liq. ligy. : gas

ice H H

Q ' lig
|ICe
S L G
0 . T/°C
C:dQ/dT Temperature 100
' 0
0 Temperature 100 T/ C
Phase Transitions Graduate Days 15
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15t order vs. continuous phase transitions

Latent heat: Q, = IL_,GPdV = area in P-V diagr.

When latent heat: O, = 0:

Ist-order phase transition.

At the critical point latent heat O, = O:

Continuous phase transition
(or 24 order phase transition)

Boiling water:

Order parameter = Pliquid —Las

p-V phase diagram
for water (H,O):

Isotherms
?I" = f".r.lJ'..'.!.*r..l"r..'.i'r.ul'

1’
| | — e — .
| order param.]-_\
L iguid- Fﬁmﬂ\

ldreal Gfas
Hegion
'

[

: flegron -
" "Boiling"
i Y
- > |
TV,
16
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3. The liquid-gas transition

P
Equation of State:

Pressure P=P(V, T, ...)
Example:
Ideal gas: P=RT/V = pkT Gas equation
( mole volume V, density p=N,/V,, R=N, k)

323K

313K

304K
293K
288K

283K

Real gas: van der Waals-equation
(P+a/V?)(V—>b)=RT
(attractive 1 1 repulsive part
of molecular potential ) P,

or P=RTAV — b)) —alV?

: : 4
same in p-p diagram:

/ g 2

Linear regime %
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p-T phase diagram

Preszure

|l aln

158
torT

p-1 phase diagram for water (H,O):

Sohd ] Laguid
®
melting A
A — vaporization ™ eritical point
eeding _
ﬁ "'ff.ﬁ“l*'-'"“l TZTCZ
/’ «tneither gas
» e nor liquid
*/‘__.,f
Alblimarti i
ﬁn (3=
depesilion A
T
0 100) ¢
0 0098
» 1

Temperature (°C)
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p-V-T phase diagram

plus various projections:
Carbon dioxide (CO,).
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Universality of the v.d.W.-equation

Bild Yeomans p. 28:

] I | I I L] 1 I I I I 1 |
T/T. 1%
0.95
Reduced van der Waals-equation: 0.90
2 _1/\ — 0.85
(PIP. +3(VIV)?) (VIV—Y5) = 8RT
with critical values P, V., T 0.80 |-
(or pc=N,/V¢) 0.75
seems to be universal: 0.70 [}
0.65 §
0.60 N
0.55 L L I i i i L I 1 1 1 ., '
00 02 04 0.6 08 1.0 1.2 14 16 1.8 20 22 24 2.6
plpc
Fig. 44.4. Phase boundary in units of reduced temperature and density for
eight different molecular fluids near their liquid-gas transitions. Mote the
universal behavior and the fact that the solid line is Ad oc (T, — T) with
f = 1/3 rather than the mean-ficld result f = 1/2 [E.A. Guggenheim, J.
Chem. Phys. 13, 253 (1945)]
Phase Transitions Graduate Days 20
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Critical exponents of v.d.Waals gas

1. Order parameter:

Like in the case of the ferromagnet,
near I'~ T the order parameter

single phase

dependson T'as:  p, —ps~(T—T.) G !

with a critical exponent f.

('mean field": f = '2)

2. 'Critical 1sotherm':

At T'= T, this isotherme is p — p. ~ [p—p[°
with a critical exponent 0

(‘'mean field'": 0 = 3)

T. T
Py T>Te  critical
d=Tejsotherm
T<T,
| inflction pt
Linear regime % e: pl. p
same in p-V diagram: P single phase
critical
Pe| o=~ isotherm
III G
L/ L+G ' \T,
Phase Transitions Graduate Days | 21
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More critical exponents

(= 'susceptibility' against external parameter p)

3. Compressibility k=(1/V)0V/op diverges: , :
above T k" ~|T— T G L '\ G
below T: k™ = 2 K" L K=/ | N\t
. o, . 7|-'C T
with a critical exponent y

(‘'mean field": y=1)

C !
4. Specific heat diverges: L G
C~ |T — T c|7a
A
Te

with a critical exponent o T

(‘'mean field'": a = 0)

Phase Transitions Graduate Days
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Critical exponents from v.d.W.-equation

From a detailed inspection of the v.d.W.-equation near 7= T
one finds (Domb S. 55):

order parameter p; —ps~(I'— T )%1e. f="
critical isotherm p—p.~[V -V |° 1ie.d=3
compressibility kK~ |T—T.7 rLe.y=1

specific heat has only discontinuity re.o=0

Lit: C. Domb, The Critical Point, Taylor and Francis 1996
2 Co(T)

e

T T

Phase Transitions Graduate Days 23
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Measured critical exponents

Domb p. 22:
critical 1sotherm has 0 > 3

‘BP :-.-% ﬁ,VT
¢

The Critical Point

P

FRESSURE

Figure 17 sotherms of xenon near the cial point Habgood and Schneider 1954) The -
dashed ine marks the region of coexistent phases. The dotted line is the critical isotherm ) fooposie) dependence of Cy of xygen on |7 =T\

according to van der Wadl¢' equation to be contrasted with the measured 16.59"C

isothermal

Yeomans p. 28:
specific heat has a small o > 0

200 | | 5
(a} 1 |
160 ?
FZ
An
B
120
_’/ﬁ
e
l']‘
m %
%"-—_
40 B — o la
152 154 156 138 L
Temperature T’ T

525 (a) Temperature dependence of Cy of oxygen at p ~ p, = 0408 glem™;
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Domb p. 206:
phase-separatrix has f = 7:

/T,

L1 1 h¥

o L L L | | | i L | 1
000204 06 08 1.0 1.2 14 1.6 1.8 20 22 24 26
nn, /

Fig. 444, Phase boundary in units of reduced temperature and density for
eight different molecular fluids near their liquid-gas transitions. Note the
universal behavior and the fact that the solid line is Ag o (T, — T)" with
B =1/3 rather than the mean-ficld result § = 1/2 [EA. Guggenheim, J.
Chem. Phys. 13, 253 (1945)]
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4. Thermodynamics

Internal energy: U=<E>=<E_ >+ <Ep0t>,

with temperature 7' defined by kT = <E|. >

15t law of thermodynamics: dU =80 + oW
Internal energy U changes when external energy 1s added
either as random molecular energy, called heat Q,
or as 'directed’' macroscopic energy, called work W =—PdV-

dU=380-PdV

for reversible 6Q: dS=00/T:
dU=TdS—PdV

Energy-content also changes with particle number N :
dU=TdS—pdV+udN
with chemical potential u = OU/ON.

At equilibrium: U — min, 1.e. dU=0

only possible if 30 =7dS=0,dV=0,dN=0
1.e. O = const, V' = const, N = const. : not very interesting

Phase Transitions Graduate Days
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Free energy

More useful in condensed matter physics is the

Free energy: F=U-TS—>dF=-SdTI'—PdV+ udN (physics)
At equilibrium: F — min,1.e. dF =0:
T' = const, V' = const, N = const, but heat exchange 00 # 0 is permitted.

Taylor: dF — oF AT+ oF 4V + oF AN (mathematics)

oT 14 oN
From comparison of both one finds:
From a given free energy F' = F(T, V, N) all state variables can be obtained:

Entropy S'=—0F/oT
Pressure P =—-0F/oV = P(T,V,N) = equation of state
Chemical potential u= OF/ON, ...

Phase Transitions Graduate Days 26
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From free energy — everything else

Partition function
master plan
Z(T,V) =L, PEr
l (B=1/kT)

More precisely:
From Free energy
Partition function (more later) Fe kTInZ
Z =2 exp(—E/kT) / { \
or
/= '”phase Space" " Internal energy Entropy Pressure
summed over all possible U=-22z 5=-(%), P=—(3)r
states with energies E.. = (U - F)/T

Specific heat Specific heat Isothermal compressibility

(constant V)  (constant X =V, P)

Cv=(8), Cx=T(5)x wr = -y (55)r
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Same 'master plan' for magnetism

In solid: dV'=0.

With magnetic field B (or H):

Free energy
dff=-8dT' -MdB
1e. F=F(T,B)

with magnetization
M =—0F/0B,

and magn. susceptibility
x =O0M/OB

Yeomans p.17:

Partition function
master plan
Z(T,H) =3, e PEr
\ (B=1/kT)
Free energy
F=—-kTlhZ \
Internal energy Entropy Magnetization
v--tpE  s=-(Py M=~
=(U-F)/T
Specific heat Specific heat Isothermal susceptibility
(constant H)  (constant X = H, M)
Cu=(%)y  Cx=T(&#)x xr = (§%)r

Phase Transitions Graduate Days
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Example paramagnetism

Hamiltonian H=-u-B=-uB for B=B, and magnetic moment u

spin “2-system with two states for each molecule:
energy/molecule E, =+uB

partition function for N molecules:

7= (Zre‘/”’fr )N =™ +e ) p=1kT

magnetisation

1 0Z e PE- _ o7 PE-
<M >=NkT ——=M,
Z 0B e e
<M > = Nutanh M8 _uB
kT kT

Saturation magnetis. M, = Nu
Susceptibility x =0M/OB =~ Nu?/kT: y~1/T
= Curie Law, for kT >> uB

Phase Transitions Graduate Days
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5. Landau model of magnetism

Landau 1930 1-dim magnet:
Lit: Landau Lifschitz 5: Statistical Physics ch. XIV T>T. .

'Landau’' free energy of ferromagnet /' = F(m)

. .. T<T,
with magnetization m = <M>/M, (mean field approx.) e
(or any other continuous phase transition) \ PIM

Order parameter m Taylor-expanded about m=0: Y

F=F\(T)+ (ra m*>+ ik m¥)V
has only even powers of m, as I’ does not depend on sign of m,
A>0 to contain system.

2-dim magnet:

Assume a' changes sign at 7=7. (linear approx.)
a=a(T—1T)

Free energy density f= (' — F,)/V then is:

f="%a(T—T.) m?> + Vad m*
Phase Transitions Graduate Days
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Spontanecous magnetization in zero external field

h
phase diagram A-T:

Landau: f="%a(T— T.) m?> + Yak m*

At equilibrium — minimum of free energy:
offom=a(T—T)m+Aim*>=0

15t solution order param. m = 0:

extremum of /* is a minimum only for 7> 7.: PM

m=Ha)T.—1T)> (1)
mis realonly for 7<7.:. FM

2nd golution:

has critical exponent 5 = Y.

Same result as for order parameter of v.d.W. gas:
pL—pg~ (Te— D"

N.B.: above T.: high symmetry, group S
below 7.: lower symmetry, group S'".
necessarily: S' = subgroup of S
(see Landau Lifschitz 5 §145)
"spontaneous breaking of symmetry"
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Magnetization 1n external field

Magnetic energy in external magnetic field B: m FM i PM
Ju = —BM = —hm with field parameter &7 = BM,, 1 i
h=0Ted |70
ie. f="a(T-T.) m? + YaA m* — hm \g T

At equilibrium: from /‘ C
offom=a(T-T.)ym+im>*—h=0 (2) y %

follows magnetization +m(7), see Fig., in particular:

critical magnetization at 7'= 7. e
h — j,m:; ///PM(_PM

has critical exponent = 3. critical /// h
_—_,_/

magnetization —»

Similar result as for critical isotherm of v.d.W. gas:

P —Pc~1p—pcf, see below: =4 F o8
P i > critical / { ‘
Ilisotherm > J
T<T, —— =
< r ..r j E
. I|'I '
el ! Inflection pt. =] I
/ '.."‘-_ =3 II I|I
B oA b
Pl 2 - Phase Transitions Graduate Days oz
Linear regime % [Z: PL p OCt. 2006



Magnetic susceptibility

Susceptibility y = om/oh diverges at T'= T... Reason: Free energy has flat bottom
Proof: At equilibrium, from (2): ) at I=T.: f
pm)=a(T—To)ym+im’=h
Op/0h = (Op/Om)-(0m/Oh) = J
(@T—T,) +3im?) =1 (3) K <P m
above T.: m=0inQ):a(lT-T,)x =

xF=[a(T-T,)]"' Curie-Weiss law PM

has critical exponent y = 1 Fﬂ \R
below T:m? = (a/A)(T—T) from (1), in (3):

[a(Tc— 1)+ 34 (@/A)Tc— D)) =[2a(Tc—Dlx =1

C
¥ =[2a(Te= DI =Yy !
Curie-Weiss law FM

Same result as for v.d.W.-compressibility x~ and «*: K ;
L '\ G
. k) L N\EE
|
I
T T
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Specific heat 1n zero field

Value of energy density /= Ysa(T — T,) m? + Vil m* WS So(D)
at its minimum (i.€. in equilibrium):
above I.: m=0—f=0 - "
below T.: m? =(a/A)(T.—T) from (1) — /
f=—Va@7)(T,~ T2
Entropy 1s lowered linearly below 7' c ¢~ c(T)
above Tt s —5o(T) =—0fl0T=0 PM t
below T: s —so(1) =—(a*’A)(T.—T) FM F PM
Specific heat makes a jump at 7. )/‘
aboveT.: ¢ —c(T)=—0s/0T=0 PM T, "7
below T.: ¢ — co(T) = —T 0s/0T = (a*/2)T FM
1.e. has critical exponent a = 0. c—c(D)
Same result as for specific heat of v.d.W. gas: y\ G
Phase Transitions Graduate Days TC > T 34
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Compare with experiment

Magnetization: M ~ (T.— T)}

Susceptibility: (7)) ~(T'—=T.)"

~ — 1/ .
x (D) =" (D):
N k-‘-:-..h 400 T T T T . T ' T ' I v ! v I
' . £ gemessene Neutronenzéhlirate
08 “ 350 - i
b fr— |
\\
i 300 -
061 ._‘g
Q
S 250
04 2
' « EXPER. Q/Q, = 200
o . _
e THEORY M/M, (Ismc MoOEL) ) x—(T)
~ =~ THEORY M/M, {Mouecuim Fiews) i ﬁ
e | 150
0 - : : : 10— T " T .1
Q 02 04 06 08 J 500 550 600 650 700 750 800 850 900
Temperatur [°C] T
/T,
o B ¥ 0
Landau or|vaw | o 1/2 1 3

Exp. 0.1 0.34 1.35 4.2
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Example: magnetic phases

Yeomans S. 6

BT

Magnetic field (Tasla)

Temperature (K)

Fig. 1.6. The ferrimagnetic phases of cerium antimonide. Tht.e rfal-
ative ordering of successive ferromagnetic planes in each ph?.se.m in-
dicated in the Figure. o denotes a plane with a net magnetization of zero
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Related: catastrophe theory

Arnol'd-classification of different types of catastrophes is due to a

deep connection with simple Lie groups: wentral poiat 00,0

inaceeszible region

A, - a non singular point

A, - alocal extrema, either a stable minimum
or unstable maximum

A, - the fold <> van der Waals:

A, - the cusp

A, - the swallowtail

A, - the butterfly

A, - an infinite sequence of one variable forms

D,- - the elliptical umbilic

D,* - the hyperbolic umbilic

D - the parabolic umbilic

D, - an infinite sequence of further umbilic for

E, - the symbolic umbilic

E., Eg

Here A, 1s the algebra of SU(n + 1); D, 1s the algebra of SO(2n)
while E, are three of five exceptional compact Lie algebras.

equilibrinm

sulden jump

~ Normal evenl

Catastrophe

Phase Transitions Graduate Days 37

Oct. 2006



6. Ginzburg-Landau theory of superconductivity

'Microscopic' BCS theory: Energy gap induced by attractive electron-electron interaction

(mock-BCS, from Kittel: Solid State Physic, Appendix E): HV =EV, i.e.
VtHV = E, with:

_____________ +1  nc=normal-cond. Selectrons—s
E o 0111 1) c¢
gap 10111 1e
-4 sc=super-cond. H=-|1 101 1|
1110 1]t
Energy gap induced by attractive nucleon-nucleon interaction 11110/
. . n
(from Maier-Kuckuck: Kernphysik p. 68): E= Energy- s
gé. enva#&es l
Y . F {_41 r 1 ’ . }
= diagonal matrix
Electron-
2,62MeV |y Eigenvectors
Cooper pairs: charge e*=2e (1,1,1,1,1) < sc
mass m* =2m, 208p), y =
densi 2= 82" "126 {-1,0,0,0,1}
ensity  |y|*=ny2, (-1, 0,0, 1, 0} o
with complex  y(r) = (n/2)” e!) {-1, 0,1, 0, 0}
_ : : _ : . . {-1,1,0,0,0}
(n,= density of superconducting electrons = 2xdensity of Cooper pairs)
Phase Transitions Graduate Days 38
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Homogeneous superconductor 1n zero field

In superconductivity, the 'macroscopic' mean field —_— FF,
> . »
— L.

approximation is valid to temperatures very close to

5

[e]

)
4
N

as y(r) of a Bose condensate cannot fluctuate strongly. /

a) without magnetic field B =0,

N ||
density of s.c. electrons n, = const. in volume V . [ = <;>
Landau free energy near 7. (with F for normal conduction): Equil.: $1.>=0 i
F = F,+ Cha(T~Tg) [y + Vi ly ) V
with order parameter y, ~ n_”, transition temperature 7. F—F
T<Te: g
From OF /Oy = 0, the density of s-c electrons in the minimum is:
above Tt n,= |y =0 nc '. ;'
below Tt 1= w2 = (@)T.—T)  sc | ,;
At minimum, the value of F'is: I‘Eh__._..--'f o, iq;; <z;s> ‘
above T.: F,=F, nc L1
below T F.=F — Ya@A) T~ T2V sc Equil.: <n>#0
In the sc-state the free energy is lowered (s-cond. energy gap)
Phase Transitions Graduate Days 39
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Critical magnetic field B,

b) with magnetic field B # 0: Meissner Effect:
Energy density of the field is B%/2u,,. T>T, ; I‘i
If magnetic field energy 1s so large that /. > F T )

then superconductivity disappears:

F,=F —(a?4)(T.— T1)*V + (B?2uy)V = F,
This the case when B surpasses the critical field i

Be=a(uy/22)(T.— 1) (near T.). (4)

Experiment: down to 7=0, B can be approximated by

(IJJJHIJ(

r'd

|

LY
o—/
B
—
T

B.=B(1 —T?*T?) =B (1 —TIT )1+ T/T) Phase diagram:
which is =2B-(T.— T)/T-near T. B Mercury
Comparison with (4) gives the pre-factor, ] O3 above line:
the zero-temperature critical field BCO:O'O“T_E‘ |

By = a(1y/22)" aT, E |
that is the whole B(7) curve grows linearly with 7. E
Experiment: = .
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Non-uniform superconductor in zero field

In general a superconductor is not uniform (mixed phases, Meissner effect, etc.):
order parameter 1s position dependent: y = y(r). (short: y for y).

If free-energy F is at its minimum for a constant y,,,

1.e. F'1s minimum with respect to all possible variations Vi,

then deviations from y, must be quadratic in Vy (like in elasticity theory),
i.c. the energy penalty for deviations from homogeneity is ~ [Vy/?.

a) without magnetic field B = 0:

F, = Fy+ [, (H02m*) [V + ear(T=T,) [P + iyl
F.=F,+ T.=E_.. -+ V.=E

sc kin sc pot

where the constants have been adjusted so
the transition to quantum mechanics becomes evident.
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Non-uniform superconductor in magnetic field

b) with magnetic field:
B = B(r) = VxA(r), with vector potential A4,
A changes momentum mo of a particle to

p=mv+eAd
but does not change its energy

E = (mv?)/2m = (p—eA)?*/2m
therefore for B # 0 (Ginzburg-Landau, 1950):

F.=F + IV (|—ihVy—e*Ay?> 2m* + Yoa (T —T)) |y > + Yakly|* + B2 2u,— B-M) dV

Fsc: Fnc+ TSC T VSC T Eﬁeld T Emagn
m*=2m,, e*=2e
Lit.: C.P. Poole et al.: Superconductivity, ch.5, Academic Press 1995
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Two Ginzburg equations

Minimum of F by variational calculation: functional derivatives give
15t Ginzburg equation oF /oy =0
2nd Ginzburg equation OF /0A =0

= two coupled differential equations (see 'small print' next page)
Here we treat only a few special cases:

plane superconductor with surface in y-z plane:

a) without magnetic field B = 0:

st Ginzburg-equation gives the spatial dependence of s.c. amplitude w(x):

OF /oy = (h*2m*) d>y/dx* + a(T— T )y + Ay =0

= differential eq. of the type "+ y(1 —1?) =0,

with solution: y = tanh x,
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small print

from: B. Schmidt, Physics of Supercond., p. 48ff:

operator —iAY in the expoession for the kinetic energy demsity has to be
ot -

—iAT — _mv_:fa=m.
Thenefore, the velocity operator is

v = —(iflfm) V¥ = [efcm) A .
Since it is the velocity » that enters the expression for the kinetic energy
density, we can now underszand why the corresponding term in [3.7) looks as
it does. It should only be added that & substitution ¢ — Ze has been made

in [3.7) which takes into sccount that the elementary charge carrier of the
Fupercurrent = 2=, Accordingly, m* in (3.7) is twice the slectron mass.

3.2.Z Ginzburg—Landau [GL) Eguations
Hy (3.7), the Gibbs free energy of a superconductor as & whole &

G = §-+f[art|“+§nr+‘:;;_

2 .
4 AP &ﬁ'—ﬂ] av, {3.8)

where the integration is carrsed osut ower the entire volume of the supercon-
ductor. Our task oow is to find equations for the fonctions #(r) and Afr)
m.;:é: thas their solutions, when substituted in (3.8), give the minimuem value
a -

I order to do thas we shall first assume that ¥{r) and A{r) are invariast
and twen solve the variational problam with respect to ¥*(r):

fgeaawr =0, (3.8)

i
e — = aw

SerGum = dev [aiaw-+.ﬂ-r|ﬂ1u'+;:;_(mvﬂ*
- ’—:4H+:}-(—inw-'f__‘.1r}] . (3.10)

The term §* could be taken ocut of the square brackess but for the teren
WY 897, Let us make some modifications. We write

o= [—mw—";—".u .

Using the identicy
TP ) = w ViF* + 59 T ,
we then have

fd'l""i"ﬂ"w- = —fﬂ"'ﬂ'-pd?’ * }."w{w.ﬂ AV . (3.11)
By Gamss's theorem, the last integral in (3.11) can be converted into & surface
integral-
J"v(uf'wdv- fwgds
5

Substituting (3.11) imto (3.10) and (3.18) into (3.9), we obtain
;|
Spelemr = }i'dv[n-+ﬂrm*+£_[-mv—’—:n} r]:r
-lf{—i!.ﬂ*?-ll}ll‘dﬁ-ﬂ

For an arhitrary function §#*, this expression can be sero oaly if both ex-
pressions in square brackets are sero. From this requirement we obdain the
first equation of the GL theory and its boundary condition

ui+ﬂ-rr-1‘+}m(iw+1—‘1] # =0, (3.12)

(ij.'l;"l+ ?..I.f:] D,

where m i the unit vector normal to the surfsce of the superconductor. Dne
can easily verify that minimization of Gy with respect to @ leads to the
complex-conjugate of (3.12). Thus, we bave obtaiped the squation for the
order parameter %, One wvariable still remains: A. In order to M the
equation for A, we shall minimize the éxpression for Gu (3.8) with respect
b A

Saluw = Jlr.w {4; da [{mvr -2 .-tr] (-mwr - ’{ ,u)]

H
# L curl A eurldA = =2 . curldA
" Aw

- f{r:‘ {‘T"“"") -[:—mw - ’%_' ur}
+ ‘—E;_ {mw' - > .w':] -{ﬁ:na}

+ h.:mu-m:.mlu}dv. {3.13)

Crne notices that §A in (3.13) could be taken out of the brackets but for the
term {1 f4x){curl A — Hy) - curl §A. Using the kdentity

a curlb = b curla — divje = b , (3.14)
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Coherence length ¢

74
vacuum | superconductor
with the right coefficients:  y(x) =y tanh(x/272¢) 77 S
with:
Coherence length & & =n(m*a(T.— 1)),
1.e. E~(T—T1)
diverges with critical exponent v =% ¢
and pre-factor . [ =a(T.— T)/A below T. &
sC . nc
The coherence length ¢ gives the distance over which
the sc-wave function can change significantly. T, T
. ) . JWl
The density |w_|?> of sc-electrons grows linearly
with distance from the transition temperature:
T. T
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London penetration depth 4;

b) with magnetic field B # 0,
and only weakly variable y/(x):

2nd Ginzburg-equation 0F /0A =0
oives the spatial dependence of the field B(x):

VZA=A/?+y*Vy + .. (with V24 = (V24,, V24,,V24))
T=0
With  B=(0,0, B,),i.e.4=(0,4,, 0), x=(x, 0, 0):
only 0?4 ,/0x* = A /A, * contributes, and from B, = 04 /0x: B,
0%’B /0x* =B /A *: vacuum
By

B,(x) = Byexp(—x/4,)

The magnetic field cannot penetrate into the superconductor,

but decays exponentially, which is the Meissner effect: /1L
with London penetration depth 4, : 4,2 = m*/(u,e*?|y_|?),

AL \
i.e. 4, ~ (T.— T)* diverges in the same way as coherence length ¢: sc /i nc
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Energy balance

Meissner-effect at the critical field B — B ", with sudden expulsion of the magnetic field:

The energy needed to expel the field B from the volume V 1s:
E o= VB 2u,> 0.

Poole S. 269:
SC

nc
This energy i1s taken from the energy gained during @ By,
the transition to superconductivity: T l 3 b

E gap —F mag <0. i — \ Typelsu:éa:}cfnductm
For a given 4, ¢, and surface 4: B
In the Meissner boundary layer of thickness 4,, 0 X
no field 1s expelled from the volume 4, 4: b))  nc SC

AEmag = _j“LA BCZ/ZILLO < O Bapp

s

In the coherence boundary layer of thickness ¢, 3

no Cooper pairs are formed in the volume &A4: Normal materia

AE,,, =+EA B2/2u, > 0.

Type |l super conductor
Aook

—

Energy balance : AE = (¢ — 4,)B:*/2u,.
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Superconductor of the 1%t and 2"¢ type

. Superconductor of the 1st type:
Superconductor of the 15! type has AE > 0, i.e.: P ypP

T>T, T<T,
coherence length £ > penetration depth 4, , H /f?

area 4 1s minimized to Meissner boundary layer at the surface L
(true for all superconducting elements exept Nb). %5
q,
. ¢,
Superconductor of the 214 type has AE <0, i.e.: L

e [N

WIHE . B

coherence length & < penetration depth 4,

Superconductor of the 2nd type:

area 4 is maximized to many flux tubes,
(true for many superconducting compounds).

From BCS:
The circular currents of the Cooper pairs are quantized,

. . . . ra !‘ | i
each flux tube containing exactly one flux quantum of size SR 2
LT - r‘i - 'llr-‘bi*

LI I I TRURE B T iy
@, = hi2e ORI X

.} b I R R T T T T .\. -3 !,bg‘
1 b '--'.’_,!.._‘ -\.I.l*-".. 4*4"::; X

'.—Pm“. Ly A ‘.-ﬁ:‘l!»;.‘h!;m;-_d
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Flux-quantisation

Buckel Supraleitung, p. 150:

/

—— e T — —r—

F)

) s
3 ol
i@ﬁ @
!
' |
| @ K
|1 |
I I l
B 1@
== _l ] — ...] |
xR
1 | | . M 1 1
3 | I 1 ] | vl
- NS BRI
AR | by |
J o T
¢.'[ I i I | |
I ex o -
/’f) i

— se

Abb. 80. Schematische Darstellung der Shubnikov-Phase. Magnetfeld
und Suprastrome sind nur fir zwei Flufischlduche gezeichnet.

Conclusion:
Mean-field Ginzburg-Landau theory describes the main phenomena

of superconductivity, but is not a microscopic theory like BCS.
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7. Gauge 1nvariance of electro-magnetic interaction

0 B, -B, -iE

z

El.-Dyn. 1n -B. 0 B, -iE

X

. field-tensor: P, = _ x . ’
covariant 5 5 0 -k
¢ t £, iE, iE, 0

notation. four-vectors: 0,=(V,10/01), j, = (, 1p)
conventional notation: covariant notation:
Maxwell equations, inhomog.:

c?VxB —OE/ot = jle,, V-E = ple, 0,F,, =J, (NB: sum-convention)
continuity-equation: :

V-j+0p/ot =0 d,J, =0 ( = conserved current)
el.-magn. potentials 4, &: A4,=(4, iD):

B=VxA, E=—V®

_ F,=0,4,-0d,4,
canonical momentum:

D =V—ieA, D,= 0/0t + ie® D, =0, —ied,
photon 1s invariant against gauge transformation: :
A'=A+V0, D =& — (1/c)00/dt A,'=4,+0,0
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Gauge symmetry U(1) of QED

Gauge invariance = invariance against arbitrary phase shifts:

Is also electron wave function gauge invariant?

Free electron, wave function y(x), with x = (x, if): (

Global, arbitrary phase shift: y' =y exp(ied)

does not change probability: [y/'|? = |y|?

But: Such a global Symmetry 1s not Lorentz-invariant!

Reasonable is only an arbitrary position dependent shift in phase 6=0(x):
w'(x) = w(x) exp(ied(x)) U(1) transformation

Gauge 1nvariance = invariance against local phase shifts = local symmetry

But: If interaction is invariant against phase shifts with arbitrary 0(x):

then a wave function w(x): MT| X

can be be changed into anything: y/'(x): A AP x  not helpful
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Gauge 1nvariance of Dirac equation ...

Equation of motion y(x) of free electron = Dirac equation:

(7,0, +m)y =0

= 4 differential eqs. for the 4 components y,,

Coefficients = 4-vectors y, 0
whose components are matrices, for instance: V3 = L
I

Dirac-equation alone i1s not gauge invariant:

Proof: Transformation /'(x) = w(x) exp(ied(x))

with chain rule a/ﬂﬂ': (aﬂl//)eieé’ +yie (a/ﬂ)eiee

the Dirac equation changes to:

0 O
0 O
i 0
0 —i

" e | : e __ . '
(7,0, +m)y'=(y,0,+my e +ie(d ,0)ye” =0+ie(d 0)y
1 extra dynamics

hence, after the transformation, Dirac equation no longer holds:

(7,9, +m)y'#0
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... requires existence of (massless) photon ...

For Dirac equation to be gauge invariant, 1.€.

for world of electrons to be invariant against arbitrary phase shifts 0(x): |y (x) = y(x) elef()

necessarily the photon must exist

which is a gauge invariant vector field 4 :

which couples to the electron (with scale factor e

(and which obeys Maxwell's equations)

= "charge")

A,'=4,+9,0

Dw=(0,—ied,)y

When in Dirac equation ¢, is replaced by the covariante derivative D :

then the Dirac equation becomes gauge invariant:

V) — : ' ie@ __ ied . ied
D,'y'=(d,—ied,"\y e =0 ,(we)—ie(4,+0d,0)ye

= (0,) e’ +ie(d, e’ —ied, y ¢’ —ie@ ) ¢’

= eieﬁ(aﬂ —ied, )y = eie‘gDﬂ W

that 1s with: (7D, +m)y=0 also:
holds.

(y,D +m)y'=e¢

1ed

__ lef _
(7D, +myy=e’-0=0

Conclusion: Free electrons cannot exist alone, but only together with photons.
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... and the conservation of electric charge

Electron in an external potential 4: y =y exp(i(p—eAd)x),

A change in potential energy by eA4 induces phase shift exp(ieAA4-x),
1.e. gauge symmetry, the free choice of local phase, means free choice of local zero of energy

gauge symmetry <« conservation of charge:

'Proof' (E. Wigner, quoted in D.H. Perkins: Elementary particle physics, ch. 3.6.1):

Assume the contrary: gauge symmetry exists without charge conservation,
but enery conservation holds:

No charge conserv.: charge e is created in an electrostatic potential @, i.e. A=(0,1D),
with energy cost W;
charge e moves to another location with potential @'#£®,
with energy cost e(® — @') £ 0,
and disappears with energy gain W',

Gauge symmetry: W is independent of e® (which determines phase), i.e. W'=—W.

Energy balance: W — W+ e(® — @') # 0 in contradiction to energy conservation
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Noether's theorem

This follows also from Noether's theorem:

Continuous symmetry < conservation law

Further 'trivial' examples:

1. time shift symmetry <> energy conservation:
Proof: Dynamics of a system descibed by Hamiltonian H=T+V=E

does not change under an arbitrary time shift d: dH = (0H/ot)dt =0

if and only if 0H/0t = 0,
1.e. if and only if energy is conserved: E = const.

2. position shift symmetry <> momentum conservation:

Proof: Dynamics does not change under a shift of position dx: dH=VH-dx=10
if and only if VH = 0,

1.e. if and only if dp/dt =—-VIV'=-VH=0: P = const.

using Newtons law with H = p?/2m + V(x))
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8. Higgs mechanism in a superconductor

Goldstone's theorem:

Each spontaneous breaking of a continuous symmetry <m >
plane
creates a massless particle (i.e. an excitation without an energy gap) / \

= Goldstone Boson \y "

Simple example: Landau ferromagnet

Free energy density f, magnetization density m,

isotropic interaction in 3-dim:

f=fo+ 2a(T—Ty)|m?* + Vadlm|*

solution above T 1s rotationally symmetric: Q
solution below 7. 1s cylindrically symmetric: ~ /\

Goldstone mode belonging to broken symmetry = magnon / \

magnon dispersion relation: % N\
mZO: e oz s =
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Goldstone theorem

Example superconductor in zero field, Ginzburg-Landau:

Lagrange density L =E,. — V, complex s.c. electron y =y, +1y,: =
o)

L, =L, + VP> = "%u?ly)? = Yl |yl

(rescaled, with p2=2m*a-(T —T), A'=2m*/, h=c=1)

AW

below T.: spontaneous breaking of symmetry, <=0 T
with fluctuations of amplitude y and phase 8 about mean <y>=(a(T — T)/A)" = v: <l//>T: )
w(x) = (v + x(x)) exp(10(x)/v)

With x=(x,1¢). For small fluctuations y<<uv, seen from above:
using |Vyl> = [Vy +i(v + ) VO/v|? = (Vy)? + (VO)? etc. s
inserted into L, this leads to: W,
L =const. + (Vy)? — 2u? y* = excitation y of mass u 0

+ (V6)? = appearance of Goldstone § without mass term

+ ... = higher order interactions neglected

(at the minimum, linear term —u?vy disappears)
(Lagrange density L and its mass terms u to be discussed later),
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Higgs-mechanism in superconductor

Gauge 1nvariance requires interaction with massless field 4 "

However, in a superconductor, the photon 4 y becomes massive.

Still: Ginzburg-Landau model is gauge invariant (Dr.-thesis Ginzburg ~ 1950)

The reason 1s what 1s now called the Higgs mechanism:

When a scalar, gauge invariant field y

suffers a spontaneous symmetry breaking,

then the vectorfield 4 , can become massive,
without losing its gauge invariance,

while at the same time the Goldstone disappears.

Ginzburg-Landau superconductor of Ch. 6:
Cooper pairs = Higgs field y:
L= Lo+ Vi — eyl - Yyl - Yidlyl* - BYjuy* + B-M

with charge of Cooper pairs e* = 2e.
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Disappearance of the Goldstone boson

1y,
As before: Fluctuations of y(x) about <y> = v at "bottom of bottle"
w(x) = (v + x(x)) exp(10(x)/v) D

W
Then [Vy —ie*Ay|? = |Vy + i(v + 0)(VO/v — e*A)?, with y<<uv: 1

if we choose gauge to A=A"'+ Vé/e*v, this becomes = (Vy)? — v2e*2A42,

and the massless Goldstone term (V)2 disappears,

and the photon A4 becomes massive (but remains gauge invariant):

L = const. + (722m*) (Vy)? — ou?|y)? = "Higgs" with mass u
—m2A* = heavy photon with mass m ; = ve* = (a*(T — T¢)/A)" 2e
—B?2u,+ B-M = field terms as before

+ some residual terms

The coherence length found before turns outtobe E=1/u (h=c=1),

or ¢ = h/uc = Compton wave length of the Higgs of mass u =(4ma-(T.— 1))”,

and the London penetration depth 4, = 1/m_,, or 4; = h/m ¢

ph
= Compton wave length of the heavy photon

N.B.: number oqu%rﬁg%sgfoﬁ‘segggﬁgtgmins the same 59
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Summary superconductivity

Mean field theory of superconductivity (Ginzburg-Landau):

Phase transition at transition temperature 7. = spontaneus symmetry breaking

Superconductor has 2 characteristic scales:

1. ofthe order parameter = superconducting condensate v,

whose fluctuations lead to the Higgs field y of mass u

whose Compton wavelength 7/uc

= coherence length & of the condensate.

2. of the magnetic field, via the Meissner effect:
The field-producing virtual photons become massive,
with mass m;, = e*v = e*<@>
Hence the magnetic field B has only a limited range given by
the Compton wavelength //m ¢ of the massive photon

= London penetration depth A

but no Goldstone survives. The theory remains gauge invariant.
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8. Electroweak unification

Preliminaries, Lit.: U. Mosel, Fields, Symmetries, and Quarks, Springer, 1989, Ch. 3.

Lagrange: L=T-V =L(x,x)
\ : d oL dL

Euler — equ's of motion : — =
t 0x Ox

examples:

1. harmonic oscillator : L= %mz’cz — lkx2
d . .

Euler — oscillation eq. P mx+kx=mx+kx=0

2. scalar field ¢ (Spin -0 Boson wie 7)
relativist. total energy E*=p*+m* (c=1)
with p=p, =(p,iE): p’=p>—E*=-m", oder p>+m’* =0,
i.e., with id, = p, =(p,iE):
Klein - Gordon equation : ai¢ —m*¢ =0
has Lagrange — density : L= —% ((8 ﬂ(./))z +m*¢’* )
2, oL  JL 0
90,0) 9
gives Klein - Gordoneq..:  d,(—d ,9) + m*¢=0 O.K.
Oct. 2006 '
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Preliminaries cont'd

. Spinor field  (spin-1/2 fermions:e,q,...)

Lagrange: L= —W(yﬂaﬂ +m)y mity =y y,
Euler — Dirac: d,(-yy,)tmy=(y,0,+my=0
conservedcurrent:  j, =—eyy, W

. Massless vector field 4, (spin -1 photon y, 2 degrees of freedom M =*1)
Lagrange: L=-1/4F, F,, (mitF, =0d,4,-0,4,)

is gaugeinvariant: F,,'=d,4,'-0,4,'=d (4,+0,0)-0d,(4,+d,0)=F,,
Euler — electro - magnetic waves.

. Coupling to charges: L =-1/4F F,  +j, A

U
Euler — Maxwell Glg.
. QED: L=-1/4F,F, +¥(y,0,+my—eyyw A,, electron-massm
T j.A4,
. Massive vector field 4, (spin-1 W,Z-bosons, supercond.: 3d.o.f. M =0,£1)
Lagrange: L=-1/4F,F, —1/2m°4,4,, boson mass m

1s not gauge - invariant, exept via Higgs Mechanism
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Electro-magnetic vs. weak interactions

Differences between el.-magn. and weak interactions (numbers for £=0):

Problem El.-magn. interact | Weak interaction solution of problem
Strength of interaction a=1/137 1073
Range of interaction 00 Ac(W) ~ 1071 cm _ .
: : Higgs-mechanism

— Mass int. particle m, =0 my, ~ 90 GeV

gauge invariance yes no
Parity conservation yes no L=y (L= )y

Renormalizibility yes no t'Hooft
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Standard Model: the particles

SU2)xU(1):
The basic particles :

1% 1- /2
Fermions : L - handed doublets | = [ LJ = K( 7V, j

€r (1 — 7/5) Ve, /2

R -handed singuletsy =(ez)=((1+7y5)w,/2)
+1
Higgs - scalar : Doublet ¢ = £¢1 _¢2]
P +ig,
Phase Transitions Graduate Days 64

Oct. 2006



Field tensors etc. in QED and 1n Standard Model

QED U(1):

Field tensor : F,=0,4,-9,4,
covariant derivative: D, =9, —ied,
Standard model SUQR)xU():

Field tensors: W,=0,4,-0,4,—gA, XA,
B, =aﬂBV —aVBﬂ
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SU(2) x U(1) gauge transformations

Gauge transformation simultaneously for :
SU2): w,'=w,exp(-iga-t/2)
Wr'=W¥r

U):  w,'=y,exp(=i¥,0/2)
Wr'=Wgexp(=i¥p0/2)

with weak isospin
and weak hypercharge Y =2(Q0 —17;)

e.g. ¥, =—1fire  undv,, ¥, =-2 firey
covariant derivative :

for doublety, : D, =0,+igd,-7/2-ig'B,
for singuletyy, : d, =0, —2ig'B,

with gauge bosons :
A'=A4,+0,0+g(axA),)
and B/'=B,+d,0 (likeel.-dyn.)
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Lagrangian of QED and of Standard Model

cf. QED U(1):
L=-(/4F,F, (Gauge boson = photon ¥)
+y(y,D, +my (Fermion=¢")
—eyy,w A, (Interactione -y )

electroweak interaction SU(2)xU(1):

L=-(1/4w,w, -1/4)B,,B,, (Gauge boson W*,Z°,y)

+y (v, D, +myy +yp(y,d, +myy (Fermionse,,v,,ey)
—eyyw A, (Electron - photon interaction)

+(1/2)Dig+ 1’9 +(1/4)A¢" (+terms a la Ginzburg - Landau)
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Summary: non-Abelian gauge theories

Symm. group u(l) SU(2) SU(3)
Sym- Type Abelian non-Abelian (Yang-Mills)
metry Example QED isospin (strong, weak) flavour, colour QCD
Multlplet (C), (p) (p;n)a (uad)a (e,Ve) (u,d,S), (rabag)
Particle o'=pexp(ied(x)) o'=pexp(iga(x)t/2) p'=pexp(1gqa;(x)-4))
"Generator" 1 3 Pauli matrices 8 Gell-Mann matr. 4,
Gauge | Int.-boson m=0 | v:A'=A4+3,0 A=A 0 a—gaxA, gluonsG,/=G,;=0,0,-2/;1 %G,
trans- -
form. Covariant P P Ao
orm derivative D =0 —led, D =0 tigrA /2 D =0,tig/;:G /2
: u=1,....4 41 42 43 -
Indices for x, , z. it Au (Au A7 Au ) 1=1,...,8

SUQ2): 7-4 P R VER R P Ay 4, 1,....4
C.g. . T = - ’ =L,
© “lo/ T o) o ) T e -

Ar= Auli iAuZ
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Standard model

Fix gauge such that Higgs ¢ = (0, ¢(x) )
Fluctuations about new minimum ¢(x) = [v + y(x)] ¢'?®" as before:

Goldstone disappears, gauge fields W=, Z° become massive, y remains massless
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Free energy superconductivity vs. standard model

Ginzburg-Iandau:

L = |-1hVy 2ieAy|> — Vou? \w|? — Yl |y* + B*2u,—B-M ...

Weinberg-Salam:

L=(D,p)" (Do) =V (p'p) —Vad (9T@)* = Va W W Y4B B,
+ lepton and quark kinetic energies + ...

Comparison of coefficients gives:
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Summary

G-Lt Uy (D)

W.-S.: SU,(2) x Uy(1)

order parameter:

super-conducting condensate

W=y, t+ iy,

Higgs doublet
W=y T 1y, ws +iy,)

boson mass generation
by Higgs field:

Meissner effect
mph —€ <l//1>

Higgs mechanism
My = & Y3~

Compton wavelength A

of interacting boson:

London penetration depth
A= hi(m c)

range of weak interaction
Ay =h/(my,c)

Compton wavelength 4

of Higgs:

coherence length

¢ = h/(uc)

"coherence length"
A= B/ (mye)
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10. Fluctuations near a phase transitions

Critical opalescence:

Light scattering off density variations

near the critical point of a liquid (freon).

Correlation length ¢ ~ mean size of a region of same density

Correlation time 7 ~ mean time of existence of such a region

When wavelength of light A ~ correlation length ¢&:

strong light scattering, transmission goes to zero.

When T — T, then density fluctuations
on all length scales and all time scales:

Divergence: ¢ — o, 7 — o

Phase Transitions Graduate Days
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Experiment on critical opalescenc

O o) ol o

well below 7. below 7. near 7. above 7.
two phases single phase
Movies:

http://www.physics.brocku.ca/courses/1p23/Heat/Critical Point_of Benzene/BENZENE3.MOV

http://eroups.physics.umn.edu/demo/thermo/4C5020.html
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http://www.physics.brocku.ca/courses/1p23/Heat/Critical_Point_of_Benzene/BENZENE3.MOV
http://groups.physics.umn.edu/demo/thermo/4C5020.html

Space-time correlations

Fluctuations are described by 'correlation functions',

which tell us, how much the fluctuations are 'in phase' with each other.

The probability, to find particle at time ¢, at position x;,
and at a later time ¢ at position x;,

1s given by the space-time correlation function.

Example: density correlation function:
Abbreviation: particle number density n, = n(x,,t,), with time average <n>:
With n.—<n> = fluctuations about this average value,

the pair-correlation function is

Gij = G(x. X.. 1. tj) = <(”i_ <”i>) (”j - <”j>)>

1° J) 1°

in particular: G, = 0 for uncorrelated fluctuations <n; n> = <n> <n>

i.e. when the joint probability = product of the single probabilities.

Similarily for spin-spin correlation functions.
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Measurement of the correlation-function G(x,¢)

In a homogeneous system: G, = Glx;, x;, 1, 1)) = Gx;=x;, {71,

12 J) 12

In a liquid or gas 1n the average all points (x;, ¢.) are equivalent, and G = G(x, ).

Measurement by inelastic neutron scattering:

Energy transfer onto the neutron Aqho

for instance by a phonon in the probe: k.E | - .
E—-E' = h?(k* — k'*)/2m = £ phonon energy 7w \

Momentum transfer onto the neutron:

k' E'
q = k — k' = (reciprocal lattice vector) = phonon momentum
Differential inelastic scattering cross section: probe| ldetector
d?o/dQdE =0, S(q, w) %
Result from scattering theory: dQ

The scattering function S(¢g, w) is the space-time Fourier transform

of the correlation function G(x, ¢?).
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Scattering functions and spatial correlations

S(g, ) =F.T. of G(x, ©) is very general result:

real space: momentum space:
Solid:
Far range order density distrib. of atoms: Bragg peaks:
| 7:)
Liquid: W x mh
Short range order 50 £4)
&%) 7 W' %“
| — x 7
9 (x) ﬂq)

(Gas: O o
Disorder Qo> — ~
1oy)
L > 9

Phase Transitions Graduate Days
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e factor for liquid srgon. [From J. L Yarnell, M_J. Katz, R G. Wenzel, and 8.
Ren. A 7, 2030 (1973)]

S(g) of liquid argon
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Scattering functions and time correlations

time signal

q (¢
longlived:
% /\\//\\//37
1 — — £
damped q(%)
Mgavwl
— &

frequency spectrum

()
!

&uo &
(lw)
A Y, B
-, g
k|
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E,=80eV
8,/05=71.0°/45.0°
q=1.304 A

3.

intensity

TR R

s AR TR R
-30 -20 -10 0 10 20
energy loss (meV)

EELS spectrum from
Mg(0001):

1. elastic peak,

2. creating a phonon,
3. destroying a phonon

600 — —
+

L

400 —
3. 1 Q

I § 1

200 %ﬁ* t%%
ﬁw“" *»‘ .
L AT N Y S

energy/meV
Phonon spectrum of Fe

islands on W(110) 77
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Neutron three-axes spectrometer

CAROUSEL

BERYLIUM
FILTER

PROTECTION

SANMPLE TAELE EE A

primary
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Critical fluctuations

Fluctuations are intimately linked to the susceptibilities (proof next page):

In a liquid: density fluctuations

<p?>>—<p>2 =Tk, with compressibility «.

In a magnet: mean square fluctuations of magnetization:
<M?*> — <M>? = kT-y, with magnetic susceptibility y.
In particular:
At the Curie temperature: 7=7. the critical magnetic fluctuations
<M?> — <M>? diverge like the (static) susceptibility y,
i.e. closely above T.:  <M?>—<M>2~ (T-T.)!
and closely below T half of this, because of y(7) = 2 x*(1).

N.B.: This result is closely related to the dissipation-fluctuation theorem:

The susceptibility in general 1s complex, its real part giving dispersion,
its imaginary part giving absorption, 1.e. dissipation of energy.
In electronics this is known as the Nyquist theorem:

noise spectrum V(w)=4kT resistivity R(w).
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Proof of: fluctuations ~ susceptibility

Reminder:

Mean value of an observable M:
<M> — ZI‘ Me_ﬂEr/ ZI‘ e_ﬂEr — ZI‘ Me_ﬂEr/Z

with partition function Z =3} e/

Proof of: <M?>—<M>?=kTy
LHS = RHS

RHS: y = OM/OH = —62F/OH? = kT 8*(InZ)/OH>
— 71327012 — 72 (0Z/OH)?

LHS: <M*> - <M>?,and E ., =~ M'H:

<M> =Y MeEN |7
=Y (CE/OH) e E/K/Z=—7"10Z/0H

<M?>=% M e BN |7 =7"1(0°ZI0H?)
— RHS = LHS

master plan

Partition function

Z(T,H) =%, e PEr

|

Free energy
=—kTlhZ \

Internal energy Entropy Magnetization

U='"B_gli ‘5‘:_(%;_),& M:_(%)T

=(U-F)/T

Specific heat Specific heat Isothermal susceptibility

(constant H)  (constant X = H, M)

Ch = (%%)H Cx=T (g_'f‘)x XT = (%%)T

80
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Measurement of magnetic critical opalescence

Staatsexamens-Arbeit N. Thake 1999

Abbildung 5-6 Versuchsaufbau zur Messung der kritischen Streuung

Blenda 2

. @l
I

Oten mit Eisenprobe

IHa - Zihlrohr

:
|

Blende 1

X (D)~ (T-T)™
x (1)="2 (1)

Counts pro 5s

400

350 ~

300 4

250

200 -

150 +

- gemessene Neutronenzahirate

e Fit

T T T 1 1
550 600 650 700 750

Temperatur [°C]

Abbildung 5-8 Messung der kritischen Streuung mit zugehérigem Fit
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Correlation function near the critical point

For many systems the spatial correlation function decays with distance r like:
G(r) ~ exp(—r/&)/rm
Near the critical point ¢ diverges like
¢~ |T — 1T c|_va
and the correlation function becomes
G(r) ~ 1/rdt2,
with dimension d, and with two further critical exponents v and 7.
Again, the critical exponents are not independent from each other.
In total, we will find, we need only two independent quantities.
At the moment, we note that empirically the following relations hold:
a+2f+y=2
o+ p(l+0)=2
y=Q2—ny
dv=2—aq
so there are only 2 independent critical exponents.
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11. Ising model

2 kinds of particles on a lattice, with next-neighbour (NN) interaction

Examples: magnet: alloy: lattice gas:

LT ec0e0ee 0-0--0+00"

(=adatoms on surface)

Ferromagnet: L R B B RO

i 123 ... N spins s, (abbr. fors, )
T Lt s s 2N possible configurations
|
Interaction energy for iequal neighbours FE=-J
Interaction energy for ILmequal neighbours £ =+J, (J=const.)
ElJ. T-—t—t+-——-
o SiSit T TF T TE A

and E= —J(¥1—1—1+1—1+1+1—1—111) for this configuration

= Ising-Model with Hamiltonian | _ _ JZN: 581
i=1
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Example brass

From this we expect that an alloy should behave exactly like a ferromagnet,
what, indeed, it does.

Brass = copper-zinc alloy (55-90% Cu) T'< T,. = 733K:
Order-disorder phase transition: ordered below 7.: €00 @O @O

unordered above 7.: €000 @®@®O
(cf. melting point: 7~ 1200K)

Order parameter = difference in atomic sublattice concentration
measured via intensity / of a neutron Bragg-peak:

T. T
with reduced temperature t=(T.— 1T, ‘
order-parameter 1s I=1,th
or log(1/1,)) = B log t: f
with critical exponent f: :

Experiment: S =0.31 like 3-dim ferromagnet ;
(cf. 'mean field: f="1) g o
2 50 00 200 W Ve-v
J. Als-Nielsen (1976): - & R
F1c. 4. Double log plot of the Bragg 84

Phase Transitions Graduate Days .
eak intensity versus the temperature
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Critical scattering from brass

I],,,||t||illlll

:

INTENSITY (ARB, SCALE)

From neutron small-angle scattering: coms
mean square fluctuation 3
<n2> — <p>2 ~ y = susceptibility: L
2D ~ (T-Tp) o
x (1) ="2x"(T) .
or log y*~—ylogt wo? |

with critical exponent y:

Experiment: y=1.252(6)
like ferromagnet
(cf. 'mean field: y=1)

J. Als-Nielsen (1976):

Critical Peak Intensity ———am.

Phase Transitions
Oct. 2

ba = d 7
g

i L i I—l—!_.1 1 o ]
L 05 0. o5 a0 By,

(>

107 BMpc
L5000 % Measured Critical Peak Intensities
- © Unfolded Crilical Peak Intensilies lo

— LSFIT o= (Ige)=¥
2000
¥ =1.252 £ 006

1000
+-500
200

i 0, semo?

Temperature -I%I‘L —_—
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a) Ising at H=0

1-dimensional Ising, NN-interaction: N=l 3

Partition function under cyclic boundary conditions:

Z= zzAN conﬁg.exp(_ﬁ/ k T)
2= 21501 CXPL(S Sy+8,85F . Asysy) /KT

Z=7y exp(s,s,JIkT)xexp(s,s; JIkT) x...xexp(sysJ/kT),

with .5, ;= %1

Z =) product of transfer matrix elements V... = exp(s,s;, J/kT)
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nxn transter matrices

Transfer matrices

(V;;) in general are nxn matrices if on each of N lattice sites n different config's:

Partition function
Z= Z 1,],..m=1,n V ij .4

mi

(N indices? in n Tconﬁgs )  (fproduct von N matrix elements)

Example: matrix element V;, = exp(—®,/kT), ®@; = potential, or = s;s;,,J from prec. page

Z=% (V) =trace V=% | AN, with eigenvalues 4; of matrix V.

=l,n”"1 »

Example N=2: element on the diagonal of VNis (V2); =%,V V;,

from definition of matrix product

For particle number N >> 1, and eigenvalue 4. < 1:

only the largest eigenvalue 4,V of the transfer-matrix contributes as 4", i.e.

free energy F=—kTInZ =—kTIn AN =—vRT In 4, , with Nk=vRT.
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Ising at H=0, spin 72

Eigenvalues[m] ;

1-dim, NN, s = %%: Mathematica;  simlify(e]

{-e™ +e*, e™+e*}

Transfer matrix S =1 -1 S; = ExpToTrig($)
et/ oI IKT 1 {28inh[x], 2 Cosh[x]}
V= oK KT |
Eigenvectors[m]

{{"lf 1]’: {lr 1}}
With x = J/kT transfer matrix V

Plot[{2 Sinh[x], 2 Cosh[x]}, {x, -1, 1}]

has eigenvalues A, =e*+e™*=2 coshx _\_/

A_=e'—e*=2sinhx <A,
and eigenvectors  (—1,1), (1,1). g

Partition function Z=A1,"= (2cosh x)"; |
free energy F =—NkT In(2cosh x), mit Nk=vR s e e

[
[ e

N=6;
at low temperature 7= 0, 1.e. x — o0; Plot[{2 Cosh[x]¥, 2 Sinh[x]"}, {x, -1, 1}
F =—NkT In e* = —NkT x ! | |

F =—-NJ '
1.e. saturated ferromagnet: |

[RNRRRNNI TPhase Transitions Graduate Days
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b) Ising at H#0

l—dim, NN,SZl/Z: Si+1 :1 - 1 Si:
. QUFHIKT I /KT 1

Transfer matrix V =
o IKT JUHKT )]

with x = J/kT, y = H/kT transfer matrix V

has eigenvalues A, = €* cosh y + (e sinh? y +e7)%,

with maximum eigenvalue A,=4,,

1.e. the free energy is F=—-NkTn 4,

Magnetization:

e” sinh y

M:N<S>=—8—F=...=
oH \/ezx sinh® y + e~
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Critical point in the Ising model

1-dim, NN, s = %:

arbitrary temperature 7> 0, magnetic field H =0, 1.e. y = 0:
Magnetization <s>=0

1.€. no spontaneous magnetization: PM

Temperature 7'= 0: spontaneous magnetization
<> — eeV/(e¥e¥)” — 1

for magnetic field H — 0*
lim,, . lim, ,<s>==+1

i.e. in the 1-dimensional Ising-Model there is
no phase transition at finite temperature 7'> 0,
the only phase transition PM — FM being at T. = 0K

Very general: There can be no long-range order in one dimension.

tTrrrrrrrrrrren

Destruction of long-range order with energy effort — 0
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Critical fluctuations 1n the Ising model

Spin-Spin correlation funktion in an isotropic and translationally invariant system was

Gr = <8y 8g> — <8y~ <Sp>.
At large distance R correlation decays as Gy ~ exp(—7/<).

1.e. correlation length £ is given by

M =1lim, [(—1/R) In Gy ],
S =1lim, | [(—1/R) In|<s, s> — <s,> <sg>],
with  <spsp>= Z 20505k exp(—H/kT) etc.

Using the transfer matrices one can show,
that for large N and for R — oo:

&1=—In (4,/4),

with the largest and second-largest eigenvalues 4, und 4,.
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Correlation function and length for s=%

for s = '2 the correlation length becomes:
é: 1= _ln (ﬂ‘—k/j“—))

with the eigenvalues A, = e* cosh y £ (e** sinh? y +e7%)”
and x=J/IkT, y=H/kT

The correlation function in the limiting case H = 0 becomes:
I, = tanh®(J/kT)
Iy

Plot[{Tanh[1]", Tanh[2]%, Tanh[4]"}, {r,

kT =J/4

| kT=J2

Phase Transitions Graduate Days
Oct. 2006

92



[sing m

odels, state of the art

Dimension d = 1, spin [ =4, fi

eld H+#O: solved Ising 1925

Dimension d = 2, spin [ = 4, field H = 0: solved Onsager 1944
Dimension d = 2, spin [ > 4,
or field H # 0,
or over-nest neighbours: unsolved
Dimension d = 3: unsolved
Dimension d = 4 = mean field
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Ising in 2-dim (Onsager)

Zweidimensionales Ising-Gitter

i)

Vergleich der Topologie des eindimensionalen Ising-Modells (Kreis) mit der
des zweidimensionalen (Torus). Man beachte die periodischen Randbedin-

gungen!

n Spalten

n Zeilen

movie [sing model
(T-= 2.27, lattice size 200)

5221 Calculation of free energy

1" Enumerate all different connected graphs (including multiply bonded
graphs). (For a survey of graph theory see DG 3, Ch. 1.)

Assign a dummy label to each vertex.

For each edge joining vertices i and j write a factor ui)).

For each [-valent vertex i write a factor K(i).

Divide by the symmetry number of the graph.

Sum each vertex label freely over the lattice,

o LA B L b

 Following these rules we write (up to third order in )

'I-W[hv]- 0 +§I +4O +3 +,2® +g/I\
+»}0\ +%A+5N

(581)
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+g/\l/+cl/\/’+ow‘).

(5.86)
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12. Scale invariance and renormalization

Mean field: Averaging over all fluctuations is not permitted

because fluctuation amplitudes diverge at the critical point.

Way out: successive averaging, separately for each scale,

starting with a small length scale L << coherence length ¢

(when working in real space).

Example for d = 2 dimensional ('block-spin') iteration process:

Divide systems in blocks of volume L¢ = 32 =9 cells.

l.
2.

Take a majority vote in each block.

Combine the cells in a block and assign the majority vote to the
cell.

Shrink new cells to the size of the original cells and renumber

them. Number of configurations shrinks from 2°= 512 to 2! = 2.

'Renormalize' the interaction H between the averaged elements
such that the new partition function stays the same:

= ) I:[, —= ) ]:I:
ZN" Z2AN' config’ e/ Z%Nconﬁg' e/ ZN’

so that the physics remains the same (scale invariance). Go to 1.
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Block-spin operation 1n 2-dim.

T=0.99 T,

(e}

Fig. 1.10. As Fig. 1.8 but with a starting temperature T = 0.99T..
Fluctuations relative to the ordered state are suppressed by the change
in length scale and the system flows towards zero temperature. After
Wilson, K. G. (1979). Scientific American, 241, 140

Phase Transitions Graduate Days 96
Oct. 2006



Block-spin operation in 2-dim.: 7=7

=T,

i

iy

-
Tl

I
1t
it §
sreem
s
-
YT
T
=

(=)

(&)

-

(e}

(©

Fig. 1.9. As Fig. 1.8 but with a starting temperature T = T,..
Because the correlation length is initially infinite there is no change
in the ordered state under iteration of the renormalization group and
the system remains at the critical temperature. After Wilson, K. G.
(1979). Scientific American, 241, 140.
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Transformation of reduced temperature and field

At each iteration step:

coherence length shrinks from fto &'=C¢/L,

that is temperature 7' moves away from7,

either to higher 77— o or to lower 7"— 0 temperatures:

Under an iteration the reduced temperature ¢ = |(T — T.)/T| changes

from ¢ to ' = g(L) t, the function g(L) is to be determined:

Upon two iterations, successive shrinking is by L, then by L,, in total by L L,.
Reduced temperature changes to ¢ = g(L,) g(L,) t = g(L,L,) t.

A function with the property g(L,) g(L,) = g(L,L,) necessarily has the form g(L) =L,
Check: LY L,» = (LL,)”.

Hence the reduced temperature ¢ transforms as: ¢ = L ¢ with exponent y > 0.

Same argument for magnetic field: it increases when coherence length shrinks:

1.e. reduced field /4 transforms as: h' = L* h with exponent x > 0.
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Critical exponent relations from scaling

During shrinking, densities increase by L9,

in particular free energy density f grows as:

f&, hy=L7 (@, h),
or f(t,hy=L"“ f(L>t, L*h).
From this property of the free energy
we can derive the relations
between the critical exponents:

1. Order parameter magnetization:
m = —0of (t, h), /Oh|,_,

=L 4L* of (LVt, L* h)/Oh|,_.,;
this holds for any L, in particular for
1LVt =1,1.e. L=t
m=|t|@ of (£1, 0)/0h = const. |t |F,
with critical exponent f = (d — x)/y.

Partition function
master plan
Z(T,H) =5, e PEr

Free energy
F=—kThhZ \
Internal energy Entropy Magnetization
— _(8F
U=-23E S=-(5)u M=-(35)r
=(U-F)/T
Specific heat Specific heat Isothermal susceptibility

(constant H)  (constant X = H, M)

Cu=(2),  Cx=T(%)x xr = (3¥)r
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Critical exponent relations from scaling

With similar arguments:
2. Susceptibility y = =0%/ (¢, h)/Oh?¥ ,_,~|t]™,
with critical exponent y = (2x — d)/y

3. Ciritical isotherm m =—0f (¢, h)/Oh| ,_,~| h |

with critical exponent 6 = x/(d — x)

4. Specific heat (h=0) C\, = — 0*f(t, 0)/0F> ~ | t | @

with critical exponent a =2 —d /y

5. Coherence length &~ | [
with critical exponent v =1/y

6. Correlation function G ~ 1/r 421

with critical exponent y =2 +d — 2x

which can in principle be resolved to write all
critical exponents as functions of two variables x and y.
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Renormalization

In each iteration step the Hamiltonian 1s renormalized:
H =R(H), H"=R(H"), etc.,

and with each step in parameter space (¢, &)

one moves further away from the critical temperature 7. (or ¢ = 0).

Find in parameter space the point where H is a fixed point under R:
H* = R(H*).

There, also temperature and field are fixed points under R:
t*=Lr*, h*=L*h* forall L:

1e.: t*=0(T'=1.),and h*=0
(or t* = o0, h* =00 at T = 0).

At T, the correlation length ¢ no longer changes under R:
¢* = &*/L for all scales L, so {* = oo at T,
(or &* =0 for T — o0).

Investigate the iteration trajectories near this fixed points

and derive from them the critical exponents.
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The universality classes of continuous phase transit.

The critical exponents depend on only two paramters x and y.

Can these take any value?

No, because they can be shown to depend only on
two other geometrical entities:

1. the spatial dimensionality d of the system

2. the dimensionality n of the order parameter

Example: Magnetization M:
n=1:Ising model s,=+1 ind =1, 2, 3 dimensions
n = 2: xy-model with planar spin M, moving in x-y plane

n = 3: Heisenberg model with 3-vector M.

As d and n are discrete numbers, there is a countable number of

universality classes (d, n), and within each class the

critical behaviour in continuous phase transitions is identical.
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Values of the critical exponents for (d, n)

with e =4 — d: .
n—+ 2 ;

v 1—!——2(”_*_3)45—[-"', (7.1)

Bmf— ot (1.2)

BT IR .

4 —n (n+ 2)*(n + 28)

&= —"" "€

2+ 8T dmreyr T U

n+ 2

N = mé"‘"', 5=3+£+”': (I4)

The higher the dimension, the less the system is disturbed by fluctuations.

(example: Domino in various dimensions)
For d =4, we are back at the mean field results.
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Critical exponents f and y

“SPHERICAL" MODEL 4

HEISENBERG
MODELS

XY MODELS

ISING MODELS

NONPHYSICAL
REGION OF . .
NEGATIVE

EXPONENTS

d=2

d=3
DIMENSIONALITY OF SPACE

dw=i

CONTOURS OF j (EXPONENT ASSOCIATED WITH MAGNETIZATION)

ey 1= &

d>4

n=2

n= -1

o

“SPHERICAL" MODEL -
L #

HEISENBERG
MODELS

7/ THI

DIMENSIONALITY OF THE ORDER PARAMETER
:

VARIATION OF CRITICAL EXPONENTS with the dimensionality of space () and of the
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Well known universality classes

Table 3.1. Universality classes

Universality Symmetry of order a Jé] ¥ ') v n  Physical examples
class parameter
2-d Ising 2-component scalar 0 1/8 7/4 15 1 1/4 some adsorbed mono
(log) e.g. H on Fe
3-d Ising 2-component scalar  0.10 033 124 48 063 004 phase separation, flu
order-disorder e.g. 3
3-d X-Y 2-dimensional vector 0.01 034 130 4.8 0.66 0.04 superfluids, supercon
3-d Heisenberg 3-dimensional vector -0.12 036 1.39 48 0.71 0.04 isotropic magnets
mean-field 0 1/2 1 3 1/2 0
(dis.)
2-d Potts, g=3 g¢-component scalar 1/3 1/9 13/9 14 5/6 4/15 some adsorbed mono
g=4 2/3 1/12 7/6 15 2/3 1/4 e.g. Kron graphite
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13. Phase transitions in the universe

TE111pera ture

1012 GeV Planck
GUTs

Inflation

Electroweak

Nucleon freeze out

Nuclear freeze out

Atomic freeze out
Galactic freeze out
1011 GeV

1045 10%s 10125 ls 10°%y today
time
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A possible GUT symmetry breaking chain

SO(10) simplest left - right symmetric GUT

SUR2)L x SU2)r x SUE)c simplest left - right symmetric model

§

SU@)L x SU@)x xUl)sx x SUG)C

N

SU(5) simplest GUT
SU3)c x SU@2)L x U(1)y Standard Model
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Inflation

Lit: A. Linde: Particle physics and inflationary cosmology.

Inflation:
If Hubble constant 1s not a constant, / = a/a = const.,

then there automatically is inflation: a = a, e*".
But H # const.: (dla)* + kla?> = (8n/3) Gp

Hot big bang model: solution a(f) ~ ¢  relativistic
solution a(f) ~ 2 today

Flat universe for k=0, ie. p=p.=3H*/8rG
i.e. Q=plpc=1
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Flat universe

Figure 7. When an object increases enormously in size, its surface geometry becomes
almost Euclidean. This effect is fundamental to the solution of the flamess, homogeneity,
and isotropy problems in the observable part of the universe, by virtue of the

exponentially rapid inflation of the latter.
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Inflation mechanism

hot universe

I
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0 tP-IO'“scc t~ 1073 sec £, ~ 10V sec t

Figure 6. The lighter set of curves depicts the behavior of the size of the hot universe (or
more precisely, its scale factor) for three Friedmann models: open (0), flat (F), and
closed (C). The heavy curves show the evolution of an inflationary region of the
universe. Because of quantum gravitational fluctuations, the classical description of the
expansion of the universe cannot be valid prior to ¢~ fp= M7 ~ 10™ sec after the Big . Lo . . '

Bang at £ = 0 (or after the start of inflation in the given region). In the simplest models, “L“‘ ET P;""‘“‘l n ":bf"l"“:‘f':ﬁbl:!:’?’ “g“v““‘l’mm -
inflation continues for approximately 10™ sec. During that time, the inflationary region e e e b ¢ leldy 2 29, W (0, T = V(0. D).
of the universe grows by a factor of from 1019 to 101", Reheating takes place

afterwards, and the subsequent evolution of the region is des¢ribed by the hot universe

theory.

J
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Self reproducing cosmos

TIME

SELF-REPRODUCING COSMOS appears as an extended branching of inflationary
bubbles. Changes in color represent "mutations” in the laws of physics from par-
ent universes. The properties of space in each bubble do not depend on the time
when the bubble formed. In this sense, the universe as a whole may be stationary,
even though the interior of each bubble is described by the big bang theory.
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